Causality in Real-World RL A Practitioners Perspective

Dhruv Madeka* *Amazon, <u>maded@amazon.com</u>

- Part I: Randomization (Easy)
- Part II: Utilizing Observational Data (Medium)
- Part III: Multivariate Regression (Hard)

Outline

Deep Invento

Meta-Analysis of Randomized Experiments with Applications to **Heavy-Tailed Response Data**

Dhruv		
Amazon, ma	Nile – – –	- ·
Kari	Univ	
Amazon, kar	Don	Wine, alcohol, platelets, and the French paradox for
Carsor	Ama	coronary heart disease
Amazon, cei		
\mathbf{An}	Dhr Ama	S. RENAUD M. DE LORGERIL
$Pinterest^*$, ann		
Dean Amazon, fos	Dean Foster <i>Amazon, NYC</i>	
Sham 1	Michael I. Jon	dan

Amazon, Harvard Unive

University of California, Berkeley, Amazon

Largely based on these papers: <u>arxiv/2210.03137</u> arxiv/2112.07602 <u>10.1016/0140-6736(92)91277-f</u>

r

I: Randomization

Potential Outcomes Framework

• The potential outcomes framework phrases causality in the following way:

 $Y = \begin{cases} Y(1) & \text{if } T = 1 \\ Y(0) & \text{if } T = 0 \end{cases}$

• The treatment effect for a unit *i* becomes:

 $Y_i = Y_i(1) - Y_i(0)$

- Formally, we augment the random variable space of (T, Y) with (Y(1), Y(0))
- Of course we never really observe the "counterfactual" so what can we do?

- Denote by \mathcal{T} , the (randomly) assigned set of units for which the treatment is applied \bullet
- We are aiming to estimate the Average Treatment Effect Δ :

• Then we define the Difference in Means Estimator as:

$$\hat{\Delta}_{DM} = \frac{1}{|\mathcal{T}|} \sum_{i=1}^{N} T_i Y_i(1) - \frac{1}{|\mathcal{C}|} \sum_{i=1}^{N} (1 - T_i) Y_i(0)$$

Unbiasedness of the DM Estimator implies:

Formal Definitions

 $\Delta = \mathbb{E}[Y_i(1) - Y_i(0)]$

Regression Interpretation

- $Y \equiv Y(0) + T\dot{(}Y(1) Y(0)) \implies \mathbb{E}[Y|T] = \alpha + \beta \Delta$
- Can be interpreted as regressing Y_i on $(1,T_i)$
- Of course we need not restrict ourselves to such simple regressions -
- Define a covariate X as a random variable which is independent of the treatment T Note this allows us to add any covariate observed *before* the randomization
- We can define the "Conditional Average Treatment Effect" (CATE) as:

$$\Delta(X) = \mathbb{E}[Y_i(T_i) | X_i = x, 7]$$

• Then define the generalized Difference in Difference Estimator:

$$Y_i = \alpha +$$

 $T_i = 1] - \mathbb{E}[Y_i(T_i) | X_i = x, T_i = 0]$

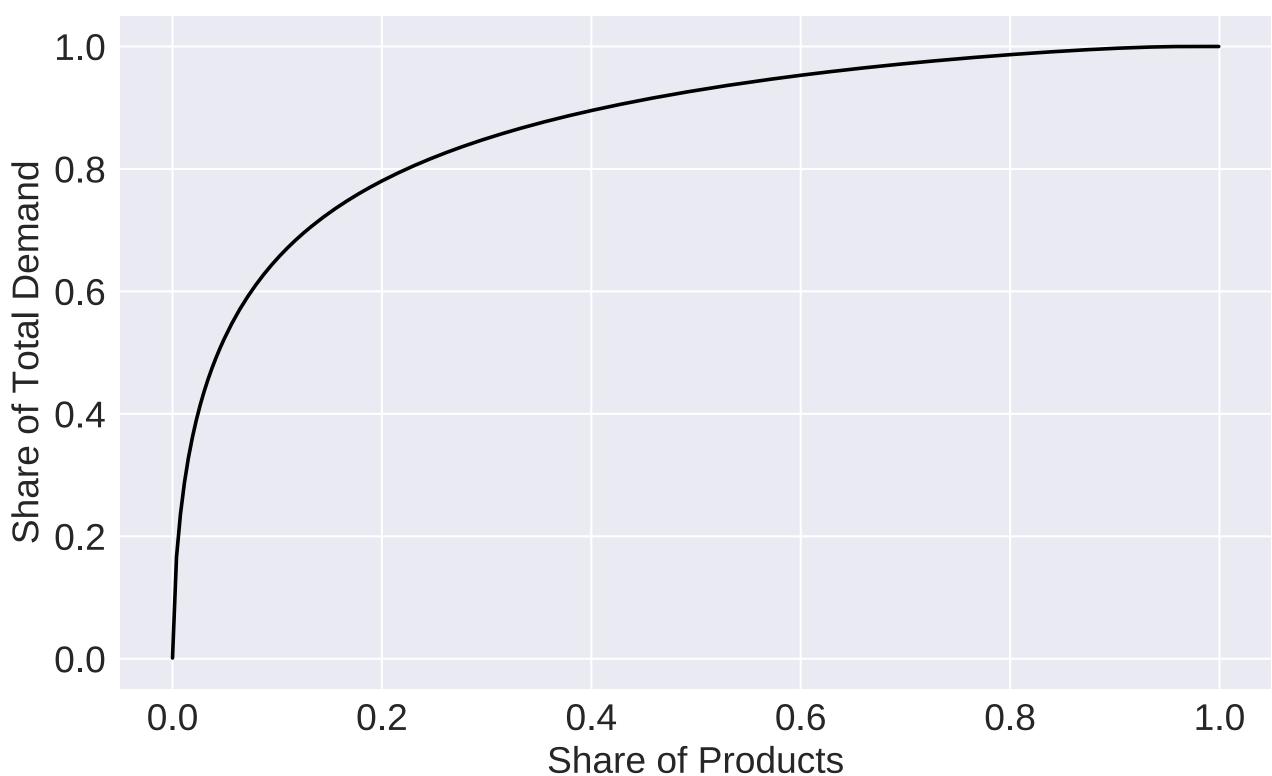
 $T_i \Delta + X_i^T \beta + \epsilon_i$

Problem with these estimators

Amazon has an incredibly power-lawed set of data

• A few products contribute to most of the revenue

 Makes classical OLS a really bad tool!



What about in the real world?

- Traditionally the solution in supervised learning is to use Weighted Least Squares
- Key idea is to downweight large residuals in OLS to deal with the heteroskedasticity that the power law induces

OLS

What's the issue with this?

 $Y_i = \alpha$ -

- WLS produces biased estimates if the weights depend on the covariates!

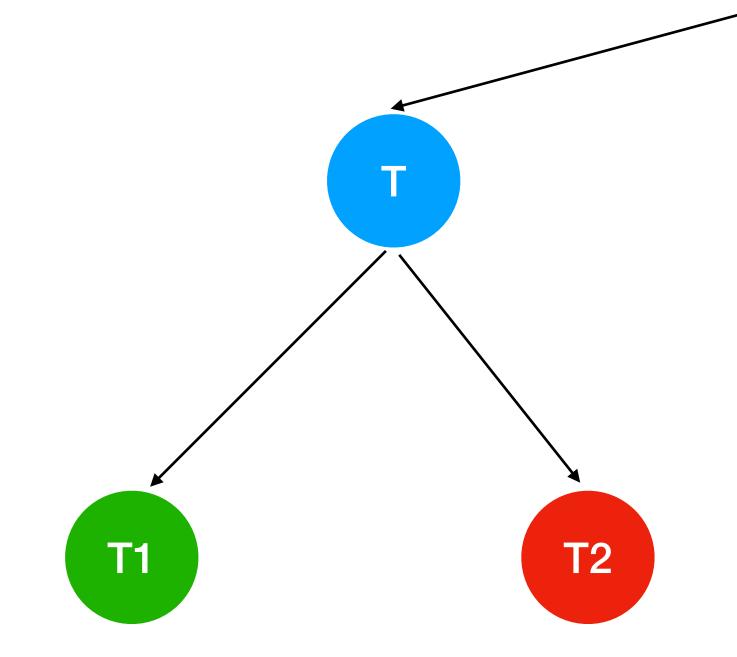
$$+ X_i^T \beta_{WLS} + \frac{\epsilon_i}{W_i}$$
$$(X^T W X)^{-1} (X^T W Y)$$

 $\mathbb{E}[\hat{\beta}_{WLS}] - \beta = \mathbb{E}[(X^T W X)^{-1} (X^T W Y)] - \beta$ $= \mathbb{E}[(X^T W X)^{-1} (X^T W \epsilon)]$ $= Cov((X^TWX)^{-1}X^TW, \epsilon)$

What do we do?

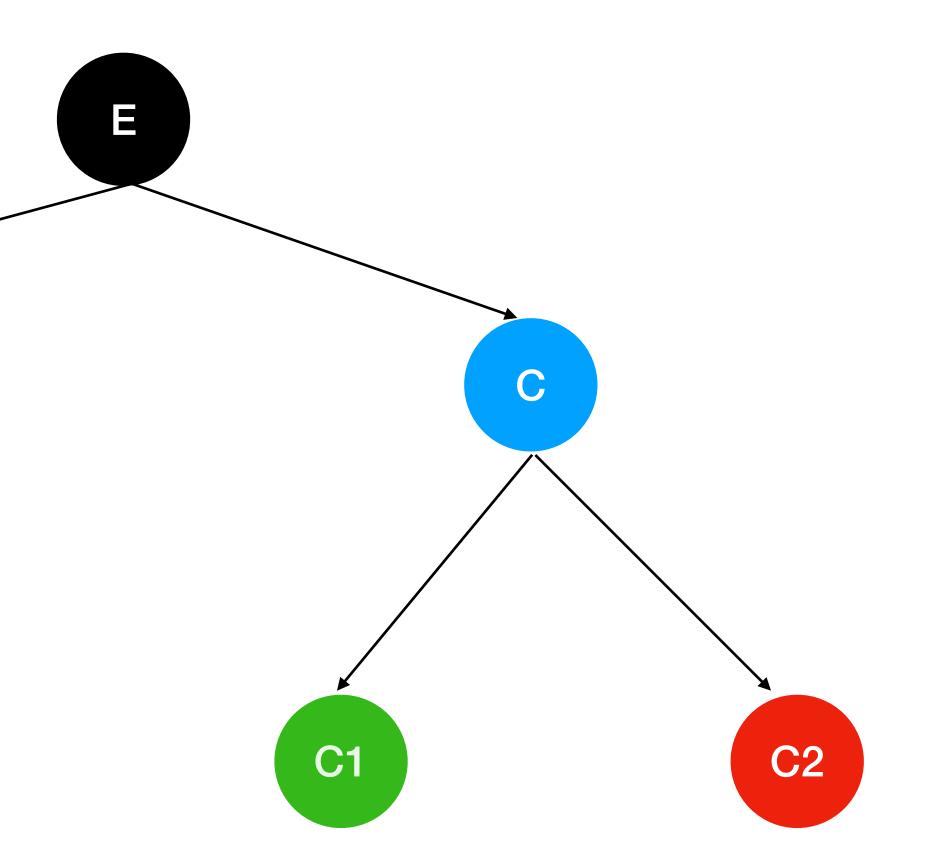
- We can't really estimate any causal effects with such power lawed data And we can't magically believe (ala Pearl/Rubin etc) that we can wish away the bias
- But, we do work at a tech company
- Which means we have a LOT of randomized trials. Can we use those in anyway to fit more complex "causal" models?

So how do we perform Model Selection?



Treat one split as "in-sample", treat the other as out of sample

Train a model on "in-sample", and test it "out of sample"



Theorem: Sample Splitting is a valid procedure

Theorem [Tripuraneni, Joncas, M., Foster, Jordan '22]: C₂ are independent then we have that:

$$\mathbb{E}[(\hat{\Delta}_{A}(T_{1},C_{1}) - \hat{\Delta}_{DM}(T_{2},C_{2}))^{2}] - \mathbb{E}[(\hat{\Delta}_{B}(T_{1},C_{1}) - \hat{\Delta}_{DM}(T_{2},C_{2}))^{2}] = \\\mathbb{E}[(\hat{\Delta}_{A}(T_{1},C_{1}) - \hat{\Delta}_{DM}(T_{2},C_{2}))^{2}] - \mathbb{E}[(\Delta_{B}(T_{1},C_{1}) - \Delta_{DM}(T_{2},C_{2}))^{2}]$$

- Implications:
 - We can rank *causal* estimators based on their out of sample performance

Consider two estimators A and B of the ATE Δ . If T, C are independent and T_1, T_2, C_1 ,

We can train complex (possibly biased) estimators as our causal models of the world

Win Table for Different Estimators **On 800 Amazon Supply Chain Trials**

• We see how often one estimator wins against the other (Borda counts)

Method	dm	mom1000	gen_dd	gen_dd_w1	dm_wins.001
dm	х	(-3.58, 0.000363)	(-12.68, 2.38e-33)	(-22.36, 3.6e-84)	(-28.19, 7.99e-118)
mom1000	(3.58, 0.000363)	x	(-2.12, 0.0342)	(-11.89, 7.32e-30)	(-13.51, 3.78e-37)
gen_dd	(12.68, 2.38e-33)	(2.12, 0.0342)	x	(-21.1, 4.73e-77)	(-19.01, 2e-65)
gen_dd_w1	(22.36, 3.6e-84)	(11.89, 7.32e-30)	(21.1, 4.73e-77)	х	(-0.26, 0.794)
dm_wins.001	(28.19, 7.99e-118)	(13.51, 3.78e-37)	(19.01, 2e-65)	(0.26, 0.794)	x

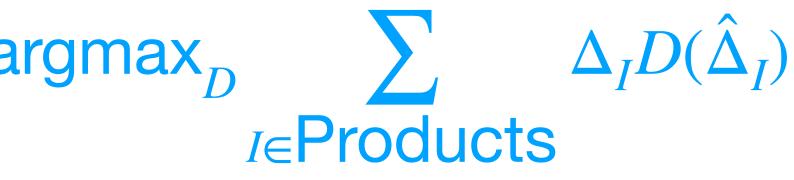
Implying:

gen dd w1 wins.001 > gen dd wins.001 > dm wins.001 \approx gen dd w1 > gen dd > mom1000 > dm

Decision Making for Randomizations

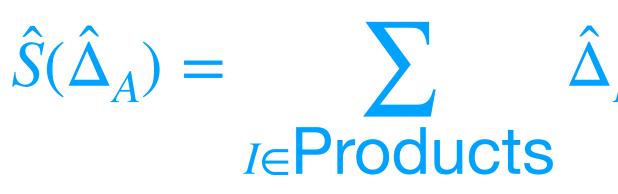
- When we're running a Supply Chain (or search engine, or social media site), mere estimation is not enough
- What we actually want to optimize is the decision to launch a new policy or not. This is a "meta" policy
- Consider a Decision Policy for a new product (I) $D_I\!.$ We wish to optimize across a series of product decisions

$$\operatorname{argmax}_{D} S(\Delta, \hat{\Delta}) = a$$



Can we use sample splitting for decision making?

- Simple procedure: Estimate $\hat{D}_I(\hat{\Delta}_A(T_1, C_1))$ for some estimator A
- Evaluate the "reward" from the sample splits $\hat{\Delta}_{LDM}(T_2, C_2)$
- Giving us the following:



 $\hat{S}(\hat{\Delta}_A) = \hat{\Sigma} \qquad \hat{\Delta}_{I,DM}(T_2, C_2)\hat{D}(\hat{\Delta}_{I,A}(T_1, C_1))$

Theorem: Sample Splitting for launch decisions

Theorem [Tripuraneni, Joncas, M., Foster, Jordan '22]: C_2 are independent then we have that:

- Implications:
 - We can rank "launch" policies directly on their out of sample performance
 - By passes the need to worry about "when" to launch a product

Consider two estimators A and B of the ATE Δ . If T, C are independent and T_1, T_2, C_1 ,

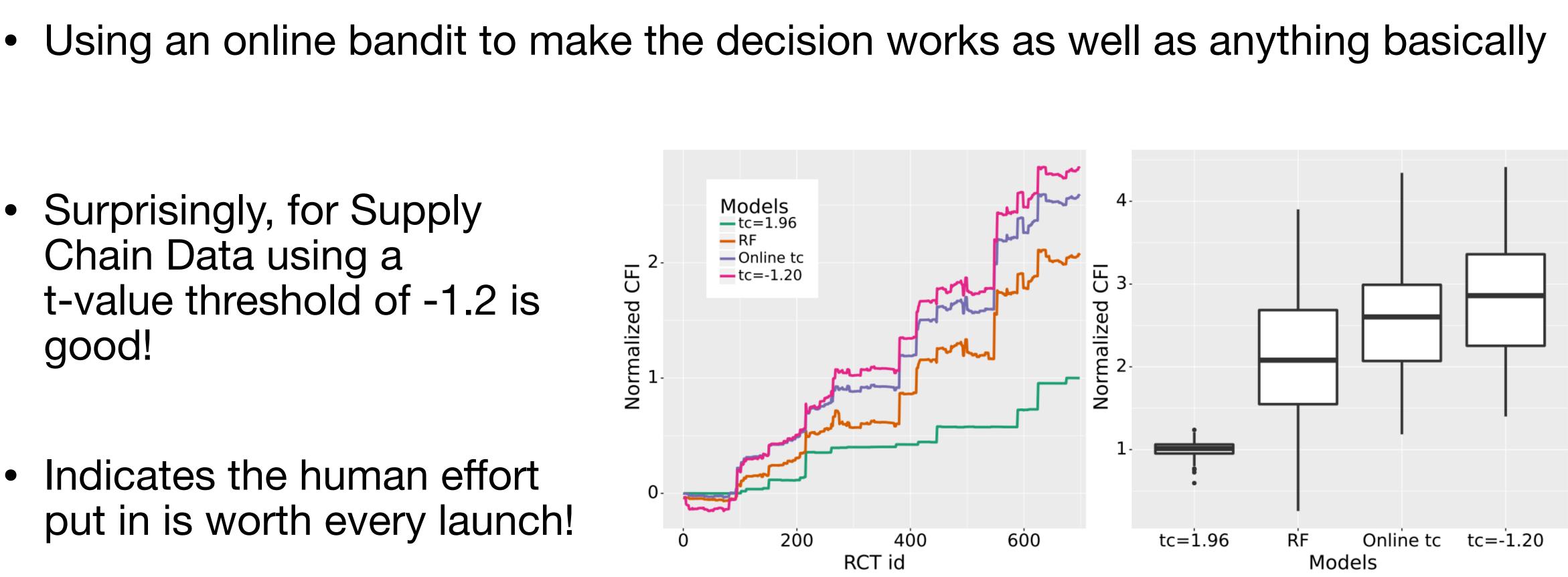
$\mathbb{E}[\hat{S}(\hat{\Delta}_A)] - \mathbb{E}[\hat{S}(\hat{\Delta}_B)] = \sum \Delta_I(\mathbb{E}[D_I(\hat{\Delta}_A)] - \mathbb{E}[D_I(\hat{\Delta}_B)])$ *I*∈**Products**

Making optimal launch decisions

Normalized CFI

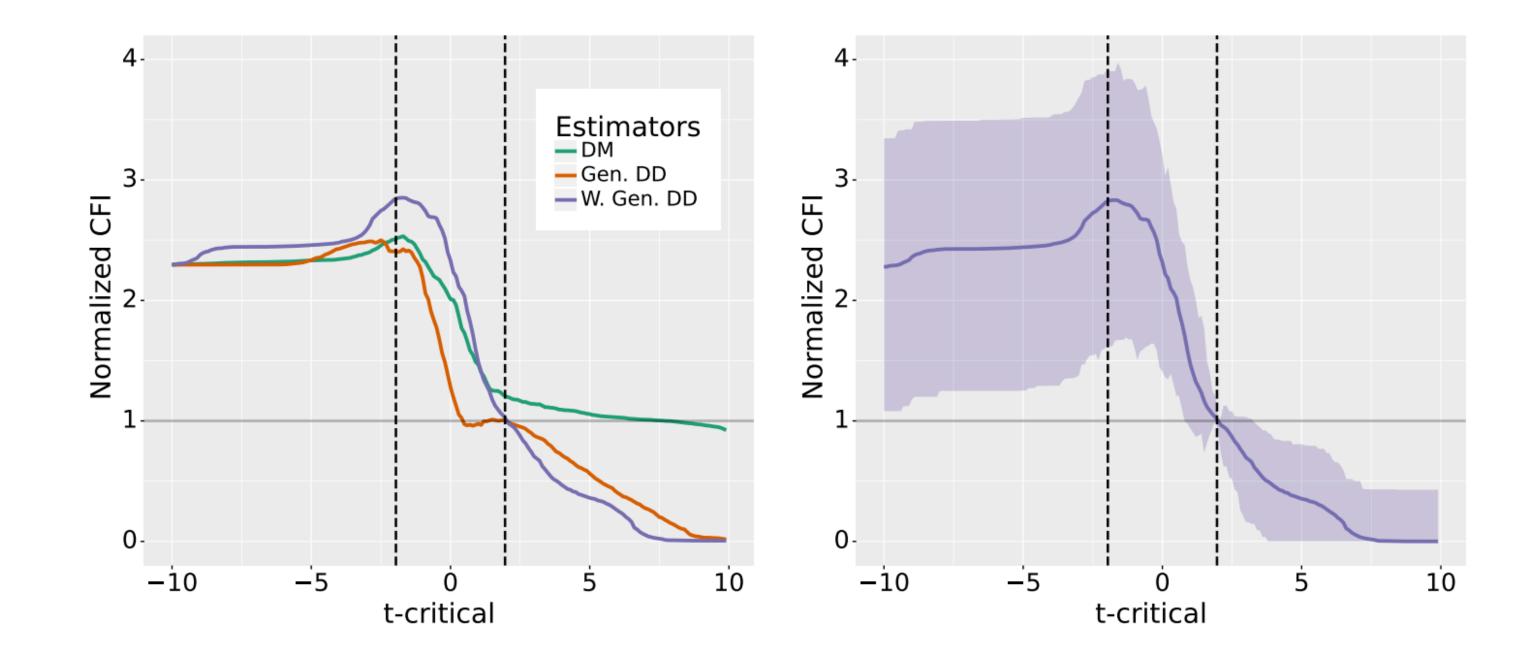
ò

- Surprisingly, for Supply Chain Data using a t-value threshold of -1.2 is good!
- Indicates the human effort put in is worth every launch!



Making optimal launch decisions

- Surprisingly, for Supply Chain Data using a t-value threshold of -1.2 is good!
- Indicates the human effort put in is worth every launch!



Using an online bandit to make the decision works as well as anything basically

II: Utilizing observational data

RL is hard!

• Sample complexity can be as large as min($|\Theta|, 2^T$)

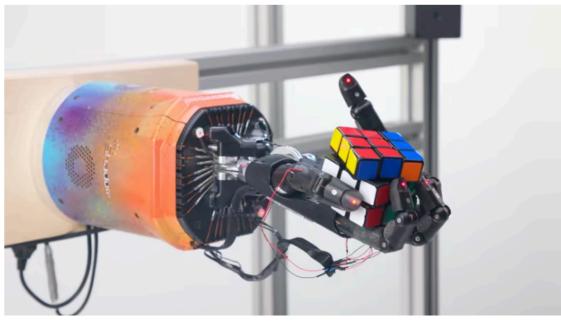
Large state/action spaces

Exploration

Credit assignment problem

Dexterous Robotic Hand Manipulation <u>OpenAl, '19</u>





The core challenges Amazon faces are sequential decision making problems.

Can RL help in this space?

Real-world RL is hard.

Deliver to Sham prime © Boston 02118	Rello, Sharr ■ EN → Account 8	
🗮 All Early Black Friday Deals Holiday Gift Guide Clinic Am	nazon Basics Customer Service Best Sellers Buy Again Prime Video Pet Supplies	Sho
All Electronics Deals Best Sellers TV & Video Audio & Home The	eater Computers Camera & Photo Wearable Technology Car Electronics & GPS Portable Audio	o Cell Phone
Hisense Roku TV	Hisense 40-Inch Class H4 Series LED Roku Smart TV with 🔶 🚖 🚖 🏫 1970	
Electronics > Television & Video > Televisions > OLED TVs		
Share	LG C2 Series 77-Inch Class OLED evo Gallery Edition Smart TV OLED77C2PUA, 2022 - AI-	12 monthl \$208.09/m (\$2,496.99
	Powered 4K TV, Alexa Built-in Visit the LG Store ★★★★★ × 663 ratings 268 answered questions Amazon's Choice in OLED TVs by LG	One-time \$2,49 √prime S
	Deal -5% ^{\$} 2,496 ⁹⁹ Was: \$2,627.05 ●	FREE Inside delivery as Saturday, 9 AM - 12
	 rime Scheduled Delivery or 12 monthly payments ~ of \$208.09 Get 10% back on amount charged to an Amazon Prime credit card. Learn more 	Ships f more
6 VIDEOS	Size: 77 inch	02118
Roll over image to zoom in	42 inch 48 inch 55 inch 65 inch 77 inch 83 inch	In Stock
ENERGY Product Energy Guide	Style: TV Only	Qty: 1 🗸
Product Energy Guide	TV + S65Q TV + S75Q TV + S80QY TV Only TV + S90QY	A
	TV wall mounting options: Get expert TV wall mounting Details	
	Without expert wall mounting Expert wall mounting +\$200.00 per unit	Ships from
	 What's included 	Sold by

9 / 12 mo. le Entrywa r to Sham - Boston Add to Cart Buy Now re transaction

Amazon.com Amazon.com Packaging Shows what's insi..

RL is hard!

- Exploration and Credit Assignment are trying to solve the same problem Learning the "causal" structure of the world
- In RL notation: $\mathbb{P}[s_{t+1} | s_t, a_t], R(s_t, a_t)$
- learning

$$a_t)$$

The dependence on the action separates this from conventional supervised

The Supply Chain Problem

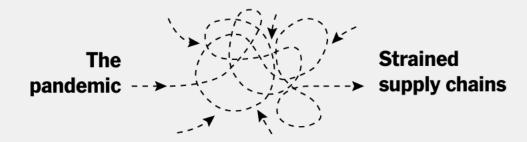
- Supply Chain is about buying, storing, pricing, and transporting goods.
- Amazon has been running it's Supply Chain for decades now
 - There is a lot of historical "off-policy" data
 - How do we use it?
 - Concern: counterfactual issue?
- This talk: how can we use this data to solve the inventory management problem?

The New York Times Supply Chain Hurdles Will Outlast

Pandemic, White House Says

The administration's economic advisers see climate change and other factors complicating global trade patterns for years to come.

The New York Times

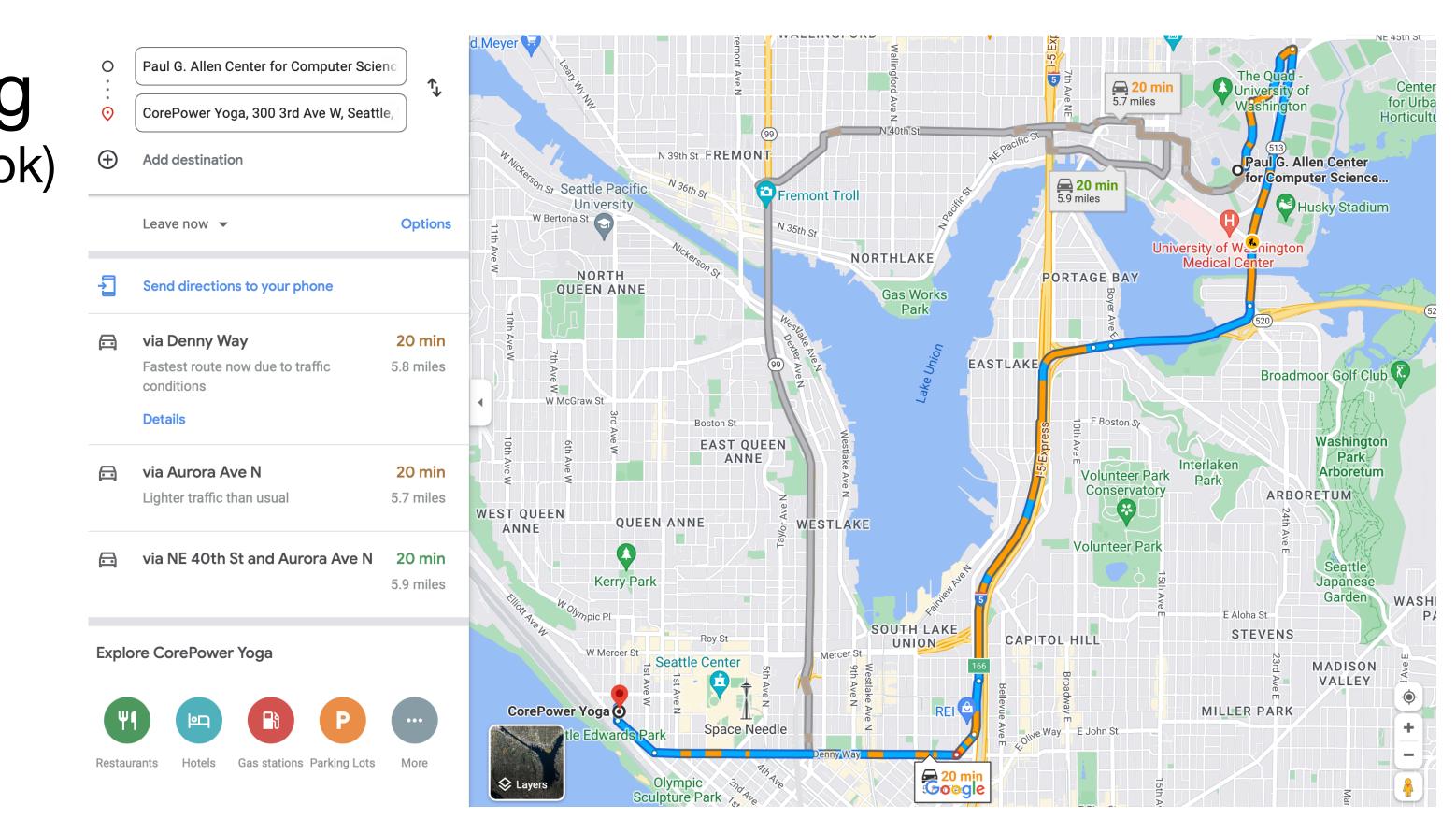


How the Supply Chain Crisis Unfolded

A practical approach to Real-World RL

- Some problems inherently duck the counterfactual issue
- If our actions don't really affect the world, we can ignore causality and frame the problem as "supervised learning"
- This is what "ExoMDP"s do

- Warm up: Vehicle Routing (when using historical data might be ok)
- We want a good policy for routing a single car.
- Policy π : features -> directions features: time of day, holiday indicators, current traffic, sports games, accidents, location, weather,



Historical Data:

suppose we have logged historical data of features

- Backtesting policies:
 - Key idea: a single route minimally affects traffic
 - Counterfactual: with the historical data, we can see what would have happened with ulletanother policy.

Warm up 2: Fleet Routing

- We want to route a whole fleet of self-driving taxis.
- Policy π : features -> directions
 - features: customer demand, time of day, holiday indicators, current traffic, sports games, accidents, location, weather...
- Historical Data:

suppose we have logged historical data of features

- Backtesting policies:
 - Key idea: a small fleet route may have small affects on traffic. Counterfactual: with the historical data, we can see what would have happened with
 - another policy.

Supply Chain Data

Time	Inventory	Demand	Order	Revenue
0	100	20	_	40
0	80	_	10	-10
1	90	20	_	40
1	70	_	50	-50
2	120	60	_	120
2	60		10	-10

Price= \$2 Cost= \$1

Backtesting a policy

Time	Inventory	Demand	Order	Revenue
0	100	20	_	40
0	80	Ι	10-40	<u> </u>
1	<u> </u>	20	_	40
1	-70- <i>100</i>	_	<u>-50</u> -20	<u> </u>
2	120	60		120
2	60	-	10	-10

Price =Cost= \$1

• Current order doesn't impact future demand.

- This allows us to backtest!
- Empirically, backlog due to unmet demand does not look significant.¹

Formalization of the Supply Chain Problem

- process [Efroni et al 2021, Sinclair et al 2022]
- A formalization of the model:
 - Action a_{f} : how much you buy ullet
 - Exogenous random variables: evolving under Pr and not dependent on our actions $(Demand_t, Price_t, Cost_t, Lead Time_t, Covariates_t) := s_t$
 - Controllable part (inventory) I_t : evolution is dependent on our action.
 - $I_t = \max(I_{t-1} + a_{t-1} D_t, 0)$ (and suppose we start at I_0).
 - Reward is just the sum of profits: $r(s_t, I_t, a_t) := \text{Price}_t \times \min(\text{Demand}_t, I_t) \text{Cost}_t \times a_t$ ullet
- Learning setting:
 - Data collection: We observe N historical trajectories, where each sequence is sampled $s_1, \ldots, s_T \sim \Pr$ Goal: maximize our cumulative reward over T periods
 - lacksquare

 $V_T(\pi) = h$

Growing literature around a class of MDPs where a large part of the state is driven by an exogenous noise

$$E_{\pi}\left[\sum_{t=1}^{T} \gamma^{t} r(s_{t}, I_{t}, a_{t})\right]$$

Causal Freeness

- ExoMDPs have a mapping to the classical Causality language
- In the original construction, several random variables were defined

- And then an MDP was constructed on top of them
 - That is all the state evolution and actions were defined as functions of these variables

 $(Demand_t, Price_t, Cost_t, Lead Time_t, Covariates_t) := s_t$

Causal Freeness

- The spirit is similar to the augmentation construction of causality

free of θ if

• $(\forall d)$ and $(\forall t)$ there exists a random variable $F_t^{i,d}$ which is \mathcal{F}_t^i measurable and

 $(\forall \theta \in \Theta) \qquad \mathbb{P}^i_{\theta}(D^i_{t+1} \le d | \mathcal{F}^i_t) \stackrel{a.s.}{=} F^{i,d}_t$

and

measures $\mathbb{P}^i_{\scriptscriptstyle A}$.

process v_t^i are all causally free of θ .⁴

We could instead use a more measure-theoretic definition of causal freeness

ASSUMPTION 1 (Causally free). Let \mathcal{F}_t^i be the sequence of sigma fields generated by all the random variables up to time t, namely $\mathcal{F}_t^i = \sigma(\{D_s^i, p_s^i, c_s^i, v_s^i, a_s^i\}_{s \le t})$. Let $\mathcal{G}_t^i = \sigma(\{D_s^i, p_s^i, c_s^i, v_s^i\}_{s \le t})$, namely the sigma field generated by everything that isn't an action. We will say that D_t^i is causally

• D_{t+1}^i and the previous actions are conditionally independent, so $D_{t+1}^i \perp \{a_s^i\}_{s \leq t} | \mathcal{G}_t$ under all

Likewise we will assume that the price process p_t^i , the cost process c_t^i and the vendor lead time

Theorem: Backtesting in ExoMDPs

Theorem [M., Torkkola, Eisenach, Luo, Foster, Kakade '22]: Suppose we have a set of K policies $\Pi = \{\pi_1, \dots, \pi_K\}$, and we have N sampled exogenous paths. Then we can accurately backtest up to nearly $K \approx 2^N$ policies. Formally, for any $\delta \in (0,1)$, with probability greater than $1 - \delta$ - we have that for all $\pi \in \Pi$: $|V_T(\pi) - \hat{V}_T(\pi)|$ (assuming the reward r_t is bounded by 1).

- Implications:
 - We can optimize a neural policy on the past data.
 - $min\{2^T, K\}$, using historical data due to the counterfactual issue.

$$|_{T}(\pi)| \leq T\sqrt{\frac{\log(K/\delta)}{N}}$$

In the usual RL setting (not exogenous), we would have an amplification factor of (at least)

What do ExoMDPs buy us?

 In classic (tabular) RL, we typically need the max error over states and actions to be bounded:

 $\max_{s,a} \|P(\cdot|s,a) -$

average case prediction for the future:

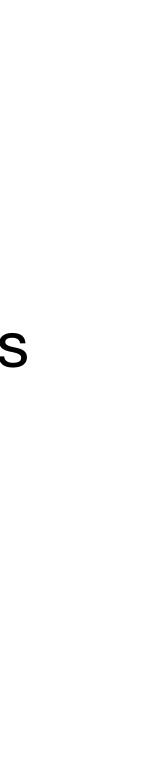
$$\frac{1}{N}\sum_{i=1}^{N} \operatorname{TotalVar}\left(\mathbb{P}^{i}, \widehat{\mathbb{P}^{i}}\right) \leq \epsilon_{\sup}$$

This allows us to avoid the counterfactual/causality issue

$$\|\widehat{P}(\cdot|s,a)\|_1 \leq (1-\gamma)^2 \epsilon$$

In an ExoMDP, if we were to use a generative model, we only need a good

$$\Rightarrow |V_T(\pi) - \hat{V}_T(\pi)| \le T\left(\epsilon_{\sup} + \sqrt{\frac{\log(K/\delta)}{N}}\right)$$



The Simulator

- Collection of historical trajectories:
 - 1 million products
 - 104 weeks of data per product
- Uncensoring:
 - Demand
 - Vendor Lead Times
- Policy gradient methods in a "gym":
 - "gym" \leftrightarrow backtesting \leftrightarrow simulator (note the "simulator" isn't a good world model).
 - The policy can depend on many features. (seasonality, holiday indicators, demand history, product details, text features)

The Simulator

- Policy gradient methods in a "gym":
 - "gym" ↔ backtesting ↔ simulator (note the "simulator" isn't a good world model).
 - The policy can depend on many features. (seasonality, holiday indicators, demand history, product details, text features)
- Note that the gym is not a true "simulator" in the usual sense • It does not simulate every possible starting state, only the
- historical ones
 - It is a collection of diracs at the historical starting states

Different from optimal control, and traditional DeepRL

Differentiable Control Problem

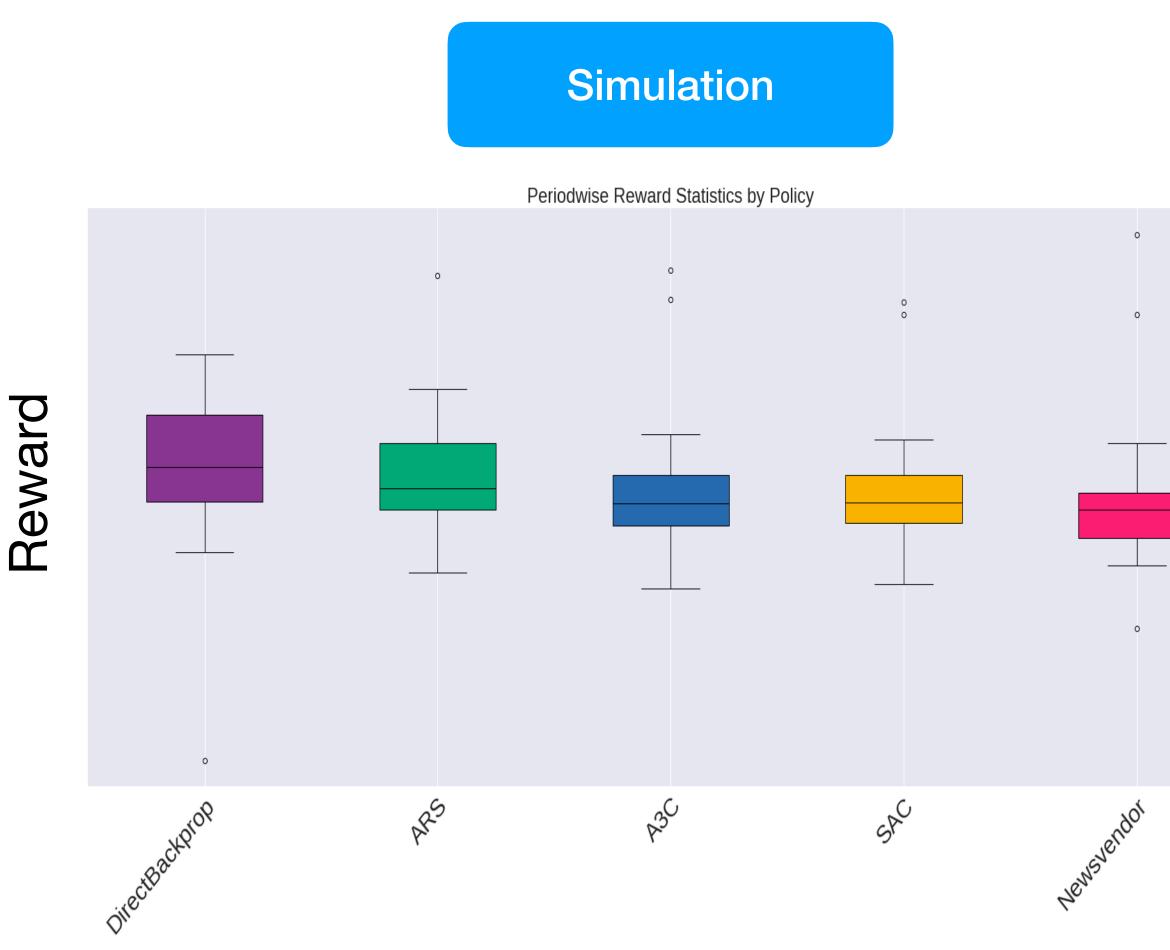
 Note that each term of our state evolution is a differentiable function of previous actions

• So, we can take gradients directly from our Reward through our policy

• This is our current production policy, called *DirectBackprop*

Sim to Real Transfer

- Sim: the backtest of DirectBackprop improves on Newsvendor.
- total revenue.



Real: DirectBackprop significantly reduces inventory without significantly reducing

Real World

Metrics	% change
entory Level	-12 ± 6
Revenue	2.6%

III: Multivariate Regression

The French Paradox

- French people eat "worse" than Americans
 - Higher fat
 - They drink wine
 - They smoke more
- Yet they live longer
- Why?

Is it red wine?

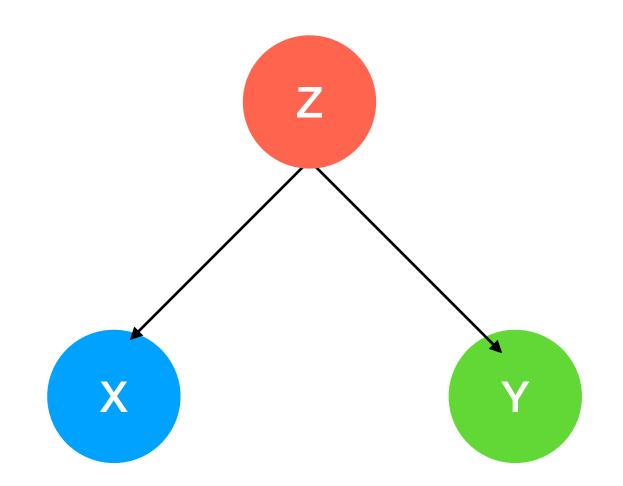
- consumed that caused this
- Hard to randomize this!
- So how do we get a causal effect?

Renaud (1991/1992) conjectured that it was the small amount of red wine they

Key issue in Causality: Lurking Variables

- and Y
- We can randomize X to break linkages
- Or if we know Z, we can control for Z

• If Z causes X and Z causes Y, we see correlation but not causality between X



The French Paradox

- When randomization is hard, problem becomes finding missing covariates
- Possible explanations:
 - Wealthy people drink more red wine, being wealthy makes you live longer
 - French people walk more, walking is the relevant covariate
 - People who drink are more relaxed, being relaxed is the real win
- One solution:
 - Multiple Regression

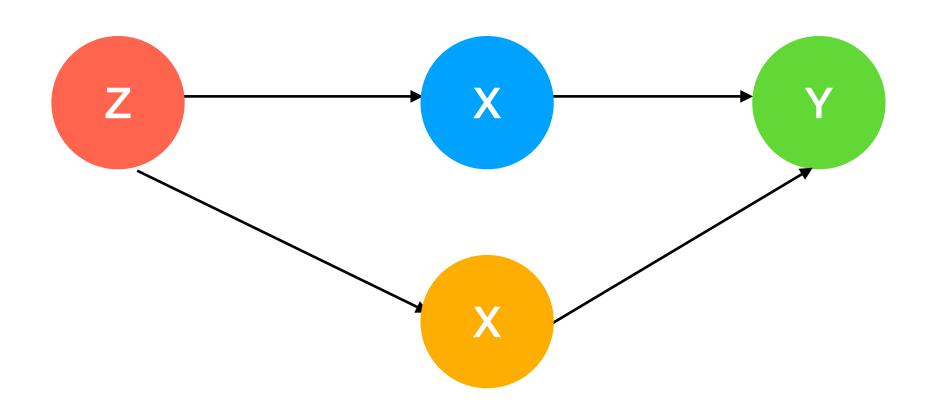
Should you drink a glass of red wine every night?

- Renaud's (1991/1992) talk/paper considered
 - Income \bullet
 - Education
 - French people in the US
 - Americans in France....
- I read it and started drinking a glass of red wine every night!

Does the "Pearl" perspective add anything?

- falsified (or fail to be falsified)
- What it gets wrong is that finding the variables in the graph is the hard problem
- Consider an instrumental variable approach:

I think what the Pearl perspective gets right is that a causal model can only be



A practitioners "recipe" for causality

- We wanted to answer the question "Does more inventory lead to more demand?"
- Regress Demand on Inventory
- Then throw the kitchen sink of covariates
- If the t-stat on the OLS coefficient doesn't change, likely the variable is "causal"

Spot the Error

- Taller people die younger (about 1 inch ner vear)

 - So the only tall people who divide

- Missing covariate was birth year
- Taller people get paid more
 - Taller people are second or third generation American
 - Flynn Effect is working for them

SCIENCE

• If you were tall, you were born I Wish I Was a Little Bit Shorter

The research is clear: Being tall is hazardous to your health.

BY BRIAN PALMER JULY 30, 2013 • 12:08 PM

Marshmallow Test

- Adolescents delaying gratification have better outcomes in life
- Missing covariate:
 - Income lacksquare
 - Education
- Possible explanations:
 - Parental investment
 - Circumstances

When we can not do this?

- Pricing is an **incredibly** hard problem
 - We want to understand how an x% change in price affects Amazon
 - What happens if we randomize price every week
 - People start gaming the price!
- Strategic behavior through time means the response is not truly random

Causal Confusion in Imitation Learning

- The example given:
 - Scenario A: Image with Dashboard ar
 - Scenario B: Image without Dashboard
- B does better than A (explanation is indicator light)
- Implies "causal confusion" according to the paper

Causal Confusion in Imitation Learning

Pim de Haan^{*1}, Dinesh Jayaraman^{†‡}, Sergey Levine[†] *Qualcomm AI Research, University of Amsterdam, [†]Berkeley AI Research, [‡] Facebook AI Research

Causal Confusion in Imitation Learning

- Incorrect causal reasoning!
 - Causality isn't the issue here, the issue is a trivially improvable error
 - Mask out the dashboard indicator since there is already a redundant signal from the break light
 - According to them, this would be a strictly better model
- This isn't "causality" it's a claim on a better model

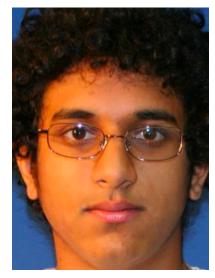
Causal Confusion in Imitation Learning

- Incorrect causal reasoning!
 - If past states and actions affect the future, adding them as features would be a trivially better model
 - If they merely confuse the model, masking them out in the first layer would be a trivially better model
- Simpler solution then graphs/ disagreement scores etc

Figure 2: Causal dynamics of imitation. Parents of a node represent its causes.

Conclusion

- There are classes of RL problems that duck the issue of causality
- One can validate more complex causal models through a meta-analysis
- Causality is primarily about missing confounders, identifying them is the hard problem



Nilesh

Kari

Carson

Mike

Dominique

Dean

Anna

Dean

Sham