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Traditional SDE’s

Traditional Stochastic Differential Equation:

dXt = b(t,Xt) dt+ σ(t,Xt) · dWt, (1)

The pdf p(t, ·) of Xt is solution to the Fokker-Planck PDE:

−∂tp−
n∑
i=1

∂i
(
bi(t, x)p(t, x)

)
+

1

2

n∑
i,j=1

∂ij

(
d∑
k=1

σik(t, x)σ
j
k(t, x, )p(t, x)

)
= 0

lim
t→0

p(t, x) = δ(x−X0)

The PDE for p(t, .) is linear, so we speak of linear SDEs

Uniqueness and existence proved if drift and volatility are Lipschitz or
locally Lipschitz with respect to the standard H2 metric
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McKean SDEs (Henry McKean, 1966)

McKean SDE: Xt ∈ Rn

dXt = b(t,Xt,Pt) dt+ σ(t,Xt,Pt) · dWt, Pt = Law (Xt) (2)

One-factor SLV: n = 2, Xt = (St, at)

The pdf p(t, ·) of Xt is solution to the Fokker-Planck PDE:

−∂tp−
n∑
i=1

∂i
(
bi(t, x,Pt)p(t, x)

)
+

1

2

n∑
i,j=1

∂ij

(
d∑
k=1

σik(t, x,Pt)σjk(t, x,Pt)p(t, x)

)
= 0

lim
t→0

p(t, x) = δ(x−X0) (3)

It is nonlinear because bi(t, x,Pt) and σik(t, x,Pt) depend on the unknown
p ⇒ We speak of nonlinear SDEs

Uniqueness and existence proved if drift and volatility coefficients are
Lipschitz-continuous functions of Pt, with respect to the Wasserstein
metric (see Sznitman, Méléard, Villani)
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Wasserstein Metric

The Monge-Kantorovich Distance (or Wasserstein metric) between two
probability measures P1 and P2 is defined as:

dMK(P1,P2)
p = inf

τ∈P(Rn,Rn) with marginals P1 and P2

(∫
Rn×Rn

d(x, y)p τ(dx, dy)

)
(4)

Interpretation:

Consider a European option on two assets X = S1
T and Y = S2

T paying
d(X,Y )p

A calibrated model implies that risk-neutral distributions P1 and P2 are
marginals

The pricing model means choosing the joint distribution τ that minimizes
the option fair value:

Eτ [d(X,Y )p]

This is precisely the Monge-Katorovich Distance
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How to simulate a McKean SDE?

dXt = b(t,Xt,Pt) dt+ σ(t,Xt,Pt) · dWt, Pt = Law (Xt)
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How to simulate a McKean SDE?
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Particle algorithm

Principle: replace the law Pt by the empirical distribution

PNt =
1

N

N∑
i=1

δ
X

i,N
t

where the Xi,N
t are solution to the (Rn)N -dimensional classical SDE

dXi,N
t = b

(
t,Xi,N

t ,PNt
)
dt+σ

(
t,Xi,N

t ,PNt
)
· dW i

t , Law
(
Xi,N

0

)
= P0

{Xi
t}1≤i≤N = system of N interacting particles. The interaction with

the other N − 1 particles comes from PNt
Then (see Sznitman, Méléard, Villani) propagation of chaos =⇒

1

N

N∑
i=1

f(Xi,N
t )

L1

−→
N→∞

∫
Rd

f(x)p(t, x)dx

In the large N limit, the (Rn)N -dimensional linear Fokker-Planck PDE
approximates the nonlinear low-dimensional (n-dimensional)
Fokker-Planck PDE
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An archetypal example: the McKean-Vlasov SDE

For 1 ≤ k ≤ n and 1 ≤ l ≤ d

bk (t, x,Pt) =

∫
bk(t, x, y)Pt(dy) = E [bk(t, x,Xt)]

σkl (t, x,Pt) =

∫
σkl(t, x, y)Pt(dy) = E [σkl(t, x,Xt)]

Particle method:

dXi,N
t =

(∫
b(t,Xi,N

t , y)dPNt (y)

)
dt+

(∫
σ(t,Xi,N

t , y)dPNt (y)

)
· dW i

t

This is equivalent to

dXi,N
t =

1

N

N∑
j=1

b
(
t,Xi,N

t , Xj,N
t

)
dt+

1

N

N∑
j=1

σ
(
t,Xi,N

t , Xj,N
t

)
· dW i

t

(5)

The intuition is that we use the particles of the previous step to sample
X, b, σ
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The Particle Method

For convergence of the particle method, we require the chaos propagation
property:

If at t = 0, the Xi,N
0 are independent particles, then as N →∞, for any

fixed t > 0, the Xi,N
t are asymptotically independent and their empirical

measure PNt converges in distribution toward the true measure Pt.
This means that, in the space of probabilities on the space of probabilities,
the distribution of the random measure PNt converges toward a Dirac mass
at the deterministic measure Pt. Practically, it means that for all functions
ϕ ∈ Cb(Rn)

1

N

N∑
i=1

ϕ(Xi,N
t )

L1

−→
N→∞

∫
Rn

ϕ(x)p(t, x) dx

where p(t, ·) is the fundamental solution to the nonlinear Fokker-Planck
PDE (3). Hence, if propagation of chaos holds, the particle method is
convergent.
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Definition (Empirical measure)

Let X1, . . . , XN be i.i.d. random variables with law µ. The empirical measure
associated to the configuration (X1, . . . , XN ) is

µ̂N =
1

N

N∑
i=1

δXi (6)

Note that it is a random probability measure with expectation Eµ[µ̂N ] = µ,
meaning that for all events A, Eµ[µ̂N (A)] = µ(A).
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µ-chaotic distributions

Definition (µ-chaotic distribution)

Let {µN}N∈N be a sequence of symmetric probabilities on (Rn)N . Let µ be a
probability measure on Rn. We say that µN is µ-chaotic if for each integer
k ≥ 1 and for all test functions ϕ1, . . . , ϕk ∈ Cb(Rn) (i.e., for all bounded
continuous functions), we have∫

ϕ1(x1) · · ·ϕk(xk) dµN (x1, . . . , xN ) −→
N→∞

∫
ϕ1 dµ · · ·

∫
ϕk dµ

Stated otherwise, k particles (within N) are asymptotically independent and
identically distributed as N →∞ (k being fixed). We say that µN is chaotic if
there exists µ such that µN is µ-chaotic.

Definition (Propagation of chaos)

Let us consider an N -dimensional SDE flow that associates to an initial
probability measure µN0 a probability µNt at time t. We say that this flow
propagates the chaos if, for any initial chaotic measure µN0 and any t > 0, µNt
is chaotic.
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Intuition

What the propagation of chaos essentially says is that as the number of
particles becomes very large:

A fixed subset of particles becomes independent as the sample increases

The empirical measure converges to the law of a single particle

It is related to the idea that in the large N-limit a linear Fokker-Planck
PDE of high dimension approximates a non-linear low dimensional
Fokker-Planck PDE

That is to say a particle among N starts behaving in a non-linear way

It becomes apparent why this is useful for the particle method, since as N
becomes large the empirical distribution depends only on the law rather
than any particle
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Some Theory

Theorem

Let {µN}N∈N be a sequence of symmetric probabilities on (Rn)N , and µ be a
probability measure on Rn. The following four properties are equivalent:

(i) {µN}N∈N is µ-chaotic.

(ii) For all test functions ϕ1, ϕ2 ∈ Cb(Rn):∫
ϕ1(x1)ϕ2(x2) dµ

N (x1, . . . xN ) −→
N→∞

∫
ϕ1 dµ

∫
ϕ2 dµ

(iii) Let X1, . . . , XN be random variables such that Law(X1, . . . , XN ) = µN . Then,
for all ϕ ∈ Cb(Rn),

1

N

N∑
i=1

ϕ(Xi)
L1

−→
N→∞

∫
ϕdµ

(iv) Let µ̂N be the empirical measure associated to µN . Then

EµN

[∣∣∣∣∫ ϕdµ̂N −
∫
ϕdµ

∣∣∣∣] −→N→∞
0

for all ϕ ∈ Cb(Rn).
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(i) → (ii) follows from the definition with k=2.
(ii) → (iii)

Proof.

We have

EµN

( 1

N

N∑
i=1

ϕ(Xi)−
∫
ϕdµ

)2


= EµN

 1

N2

N∑
i,j=1

ϕ(Xi)ϕ(Xj)− 2

∫
ϕdµ

1

N

N∑
i=1

ϕ(Xi) +

(∫
ϕdµ

)2


=
1

N
EµN [ϕ(X1)

2] +
N − 1

N
EµN [ϕ(X1)ϕ(X2)]

−2
∫
ϕdµEµN [ϕ(X1)] +

(∫
ϕdµ

)2

−→
N→∞

0 +

(∫
ϕdµ

)2

− 2

(∫
ϕdµ

)2

+

(∫
ϕdµ

)2

= 0

as from (ii) EµN [ϕ(X1)ϕ(X2)] −→
N→∞

(∫
ϕdµ

)2
and EµN [ϕ(X1)] −→

N→∞

∫
ϕdµ.

Dhruv Madeka

McKean Stochastic Differential Equations and the Particle Method



(iii) → (iv) follows from the definition of convergence in mean (iv) → (i)

Proof.

Let k ≥ 1 and ϕ1, . . . , ϕk ∈ Cb(Rn). We have (from the triangle inequality):∣∣∣EµN [ϕ1(X1) · · ·ϕk(Xk)]−
∫
ϕ1 dµ · · ·

∫
ϕk dµ

∣∣∣
≤
∣∣∣EµN [ϕ1(X1) · · ·ϕk(Xk)]− EµN

[∫
ϕ1 dµ̂

N · · ·
∫
ϕk dµ̂

N

] ∣∣∣
+
∣∣∣EµN

[∫
ϕ1 dµ̂

N · · ·
∫
ϕk dµ̂

N

]
−
∫
ϕ1 dµ · · ·

∫
ϕk dµ

∣∣∣
The second term on the r.h.s. converges to zero thanks to hypothesis (iv). The
first term on the r.h.s. reads∣∣∣EµN [ϕ1(X1) · · ·ϕk(Xk)]−

1

Nk

N∑
i1,...,ik=1

EµN [ϕ1(Xi1) · · ·ϕk(Xik )]
∣∣∣
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Proof.

In the above sum, N !
(N−k)! terms are such that the indices i1, . . . , ik are all

different. By symmetry, they are equal to EµN [ϕ1(X1) · · ·ϕk(Xk)] and can be

added to the first term. The other terms can be bounded by Mk with
M =

∑
j ||ϕj ||∞, so the first term is bounded by

EµN [ϕ1(X1) · · ·ϕk(Xk)]
(
1− 1

Nk

N !

(N − k)!

)
+

(
1− 1

Nk

N !

(N − k)!

)
Mk

≤ 2Mk

(
1− 1

Nk

N !

(N − k)!

)
−→
N→∞

0
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The McKean SDE propagates the chaos

Theorem

The propagation of chaos property holds for the McKean Vlasov SDE (5)

The intuition of the proof relies of a sort of ”coupling method”, which consists
of introducing a process Y it defined as:
dY it = b(Y it ,Pt) dt+ σ(Y it ,Pt) dW i

t , Y i0 = X0

b(y,Pt) ≡
∫
b(y, z)Pt(dz), σ(y,Pt) ≡

∫
σ(y, z)Pt(dz), and Pt = Law(Xt)
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These are standard SDEs which admit a strong solution as b and σ are
Lipschitz-continuous functions. The density qi(t, x) of Y it satisfies the linear
Fokker-Planck equation

− ∂tqi(t, x)−
n∑
i=1

∂i
(
bi(t, x,Pt)qi(t, x)

)
+

1

2

n∑
i,j=1

∂ij

(
d∑
k=1

σik(t, x,Pt)σjk(t, x,Pt)qi(t, x)

)
= 0

with Dirac initial condition. From (3), the density p(t, x) of Xt is also a
solution. By uniqueness, Pt = Law(Y it ).
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Proposition

Let (Xi,N )1≤i≤N be defined by (5). Then

E[|X1,N
t − Y 1

t |] ≤
C(t)√
N

where C(t) is a smooth function of time independent of N .

Proof of Theorem 5.

To prove the propagation of chaos for a McKean SDE, we use the propagation
above: Let us denote by µt the law of the solution Xt of the McKean SDE (5).
From Theorem 4 (iii), it is enough to show that for all ϕ ∈ Cb(Rn),

1

N

N∑
i=1

ϕ(Xi,N
t )

L1

−→
N→∞

∫
ϕdµt (7)

where the Xi,N
t are defined by (5).
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Proof of Theorem 5.

Now,

E

[∣∣∣ 1
N

N∑
i=1

ϕ(Xi,N
t )−

∫
ϕdµt

∣∣∣]

≤ EµN

[∣∣∣ 1
N

N∑
i=1

(
ϕ(Xi,N

t )− ϕ(Y it )
) ∣∣∣]+EµN

[∣∣∣ 1
N

N∑
i=1

ϕ(Y it )−
∫
ϕdµt

∣∣∣]

As by construction the processes {Y it }1≤i≤N are i.i.d. with law µt, the second
term above goes to zero as N →∞ from the law of large numbers.
For all ε > 0, there exists a Lipschitz-continuous function ϕε such that
|ϕ− ϕε| ≤ ε. The first term is then bounded by

2ε+ EµN

[∣∣∣ 1
N

N∑
i=1

(
ϕε(X

i,N
t )− ϕε(Y it )

) ∣∣∣]

≤ 2ε+ ||ϕε||LipE[|X1,N
t − Y 1

t |] ≤ 2ε+ ||ϕε||Lip
C(t)√
N

from Proposition 21.
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