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What	is	learning?

• Traditional	definition:
• Consider	a	task	T,	and	a	performance	metric	P
• An	algorithm	which	improves	it’s	performance	P	on	a	task	T	with	
experience	𝐸 is	said	to	learn	from	the	experience	E



What	are	the	different	tasks?

• Task	can	be:
• Classification:	𝑋 → 1,… , 𝑘
• Regression:	𝑋 → ℝℕ
• Anomaly	Detection
• Etc.	etc.

• More	and	more:
• Denoising
• Sampling
• Machine	Translation



What	are	the	different	performance	
measures?

• Easier	for	classification/regression

• What	about	for	unsupervised	learning?

• How	do	we	decide	whether	the	samples	we	are	generating	are	

“good”?



What	are	the	different	performance	
measures?
• Are	these	GAN	Images	good?



What	are	the	different	performance	
measures?
• Does	a	higher	BLEU	score	mean	we’re	translating	better?

• Criticisms:
• Too	much	variation
• Too	little	variation
• Intrinsically	meaningless
• Human	translators	score	low	on	BLEU

False Negative

False Positive

Ananthakrishnan	et	al



Why go deep?
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Going Deep

Source:	LeCun	(2017)

Either	the	world	is	compositional	or	there	is	a	god	– Eisner,	ICLR	(2014)



So,	what	are	those	funny	little	diagrams?
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Universal	Approximation	Theorem

• Shallow	and	Wide	vs	Deep	and	Narrow	– More	memory	or	more	time
• Universal	Approximation	Theorem	states	that	a	network	with	a	single	
hidden	layer	can	approximate	any	continuous	function
• Not	surprising	– when	it’s	wide	enough,	it’s	basically	a	lookup	table
• But	most	interesting	functions	require	a	very	large	lookup	table	–
depth	helps	us	reduce	the	number	of	neurons	exponentially!



That	sounds	fun	to	train:

Backprop (Rumelhart,	1986)	is	maybe	the	reason	the	
whole	thing	works

Before	we	go	into	that,	let’s	talk	about	what	gradient	
descent	is	first



Gradient	Descent
𝐷=𝑓 𝑥 = 𝛻𝑓 𝑥 . 𝑢 = 𝛻𝑓 𝑥 𝑐𝑜𝑠𝜃

⟹𝐷=𝑓(𝑥) is	maximized	in	the	direction	of	𝛻𝑓(𝑥)
𝑤FG+ = 𝑤F − 𝜂𝛻𝑓(𝑤)



Gradient	Descent

𝜂 < 𝜂KLM 𝜂 > 𝜂KLM 𝜂 = 𝜂KLM

𝐿 𝑤 = 𝐿 𝑤P +
1
2𝑎 𝑤 − 𝑤P -

⟹
𝜕L w
𝜕𝑤 = a w − wP

⟹ 𝑤 = 𝑤P + 𝑎W+
𝜕𝐿 𝑤
𝜕𝑤

⟹
𝜕-𝐿 𝑤
𝜕𝑤- = 𝑎

𝜂KLM =
𝜕-𝐿 𝑤
𝜕𝑤-

W+



Gradient	Descent
• For	linear	regression,	the	loss	function	usually	looks	like

• 𝐿 𝑤 = ∑ YZW([\G[]^Z )_�
Z

`

• 𝛻𝐿 𝑤 =
∑ (aZb c\dc]eZ )
�
Z

f
∑ aZb c\dc]eZ 	geZ
�
Z

f

Pretty	expensive	if	m	is	large.	Do	we	really	need	all	
those	points?	



Stochastic	Gradient	Descent

• Consists	of	showing	the	input	vector	for	a	few	examples
• Compute	loss
• Use	average	gradient	as	a	noisy	estimate	of	the	true	gradient

Source:	LeCun	(2017)



Backpropagation
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This	sounds	hard	to	implement
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With	numpy,	sure	– with	MXNet,	not	so	much



Training	a	simple	model	- manually

Create	variables

Record	forward	
pass

Update	
parameters



nn Module	– Life	is	much	simpler

Essentially,	replace	simple	
dot	product	with	this

Replace	optimization	step	
with	advanced	optimizer



Blocks	allow	simplified	abstractions	for	complicated	architectures

Define	Layers

Define	forward	pass

MLP

MLP

Dense Output

Stacked	Architecture



CPUs	vs	GPUs

Source:	NVidia

CPUs	are	optimized	for	latency
GPUs	for	bandwidth

CPU	can	fetch	small	amount	of	memory	really	
quickly	– GPU	can	fetch	large	amounts	of	memory	in	
the	same	time

The	large	number	of	cores	in	the	GPU	hide	the	
latency	issues	by	parallelizing	the	operations	over	a	
lot	of	threads

This	is	important	for	Deep	Learning	– since	most	of	
it	is large	matrix	multiplications



CPUs	vs	GPUs

Source:	jcjohnson	(Github)

GPU	- GTX	1080	Ti:

• 3584	Cuda Cores
• 10.6	FP32	TFLOPS
• 11GB	Memory

Intel®	Xeon®	Processor	
E5-2630	v3:

• 8	Cores
• 20MB	Cache



Some	Theory
• A	lot	of	what	you	hear	as	criticism	of	Deep	

Learning	typically	used	to	involve	(and	still	
does)	that	you	don’t	have	any	guarantee	of	
converging	to	a	minimum

• Ben	Arous et	al	[2014] show	that	this	doesn’t	
really	matter

• Using	higher	order	spherical	spin-glass	based	
results,	they	show	that	any	deep	rectified	
network	has	an	enormous	number	of	critical	
points

• Seems	to	show	that	the	number	of	saddle	
points	with	fewer	downward	curving	points	
are	very	large	in	number	but	all	have	the	same	
value!



Regularization in Deep Learning



Different	types	of	“conventional”	regularization

L1	Regularization
• Quite	similar	to	conventional	modeling	–
penalize	the	L1	Norm	of	the	weights

• Cortes	et	al	[2016]

• 𝑅 𝑓 ≤ 𝑅l,mn + o
m
∑ 𝑤p +ℝ` ℍp
r
ps+ + 𝐾 𝜌,𝑚, 𝑙, 𝑑

• Seems	to	say	penalize	higher	layers	
more	than	lower	layers

• If	you’re	overfitting	– typically	it	works	
better	to	have	a	wider	first	layer	and	
penalize	it	heavily	and	thinner	higher	
layers

L2	Regularization
• Penalizes	the	L2-Norm	of	the	weights
• Typically	implemented	as	weight	decay	in	many	
libraries

• Rewrites	the	objective	as:	𝐿y 𝑋, Ω, 𝑤 =
𝐿 𝑋, Ω, 𝑤 + {

-
𝑤

-

• Taking	derivatives:	𝛻𝐿y 𝑋, Ω, 𝑤 = 𝛻L + 		𝜆𝑤

𝑤FG+ = 𝑤F − 𝜂𝛻𝐿′
𝑤FG+ = 𝑤F − 𝜂𝛻𝐿 − 𝜂𝜆𝑤F
𝑤FG+ = (1 − 𝜂𝜆)𝑤F−𝜂𝛻𝐿



More	interesting	forms	of	regularization

• Implicit	regularization:
• Early	Stopping:	During	training,	monitor	the	error	on	a	validation	set	and	stop	
when	that	error	meets	some	criteria

𝑤F∗G+ = 𝑤F∗ − 𝜆𝜂𝑤F∗ + 𝜂𝛻𝐿

⟹ 𝜆~
𝛻𝐿
𝑤

+
[

→	not	a	bad	approximation



More	interesting	forms	of	regularization

• Implicit	regularization:
• Stochastic	Gradient	Descent:	Recht et	al	[2015]	use	linear	regression	to	
hypothesize	that	the	gradient	descent	finds	good	“margin”	solutions

min
[
		 𝑤�𝑥 − 𝑦 -

𝑆𝐺𝐷 → min | 𝑤 |
𝑠. 𝑡. 	𝑋𝑤 = 𝑦

+
[

is	the	margin	of	the	

classifier



Workhorses
• Dropout:

For	every	single	neuron	(during	training)	–
replace	the	output	by

𝑓 ℎ = 𝐷	�𝑎 ℎ
�

�
Where	D	is	a	vector	of	Bernoulli	i.i.d’s with	
probability	p	of	being	zero

Masking	effectively	trains	an	ensemble	of	
weak	learners on	different	mini-batches

Approximate	the	geometric	mean	through	
scaling	the	weights	by	p	during	test	time

Source:	Goodfellow et	al	(2016)	



Workhorses
• Dropout	as	Bayesian	Approximation:

Stochastic	forward	passes	through	a	pre-existing	
architecture

Theoretically	produces	reasonably	calibrated	
uncertainty	estimates	for	some	problems

Practically	– doesn’t	produce	nearly	enough	
noise

A	simple	experiment	proves	this	quite	effectively



Clever	Hacks
• L1	Layer	(Madeka et	al	[2017]):

Usually	through	the	kitchen	sink	at	a	deep	model	
and	let	it	figure	it	all	out	for	you	(with	regularization)

Doesn’t	really	work,	and	typically	makes	the	whole	
thing	really	slow

Another	option	is	to	penalize	the	L1	Norm	of	the	
weights	for	a	single	layer	at	the	input	stage	with	1-1	
connections	with	the	inputs	- 𝑥3� = 𝑤3+𝑥3

Loss	Function	- L w+,w, x + 𝜆 𝑤+
+



Clever	Hacks
• L1	Layer	(Madeka et	al	[2017]):

Most	features	have	0	weight

Can	either	do	2	phase	learning	(retraining	without	
the	L1	Layer	and	the	removed	features)	or	just	feed	
0’s	to	your	model	in	the	data	iterator

Stops	the	overhead	of	a	large	amount	of	data

Improves	performance	by	about	> 1.5𝜎



A Quick Digression on Optimization



What	do	batch	norm	and	the	selu activation	do?

36

They	normalize	the	outputs	of	each	layer	to	have	mean	0	and	variance	1!

The	equations	(for	Batch	Norm)	are:

𝑥pn =
𝑥p − 𝔼 𝑥p

𝑉𝑎𝑟 𝑥p�

Batch	norms	add	a	learnable	shift	and	scale:

𝑦p = 𝛾p𝑥pn + 𝛽p



What	does	it	mean?

37

Dhruv



What	does	it	mean?

38

w*

𝐿 𝑤 =
1
2𝑎 𝑤 − 𝑤∗ - + 𝕃 𝑤∗

⟹
𝜕𝕃 𝑤P
𝜕𝑤 = 𝑎(𝑤P − 𝑤∗)

𝕃(𝑤)

⟹
𝜕-𝕃 𝑤
𝜕𝑤- = 𝑎 =

𝜕𝕃 𝑤P
𝜕𝑤

𝑤P − 𝑤∗

⟹ 𝑤∗ = 𝑤P −
𝜕-𝕃 𝑤
𝜕𝑤-

W+ 𝜕𝕃 𝑤P
𝜕𝑤



What	does	it	mean?

39

𝑥+ 𝑥-

𝑤+ 𝑤-

𝕃 𝑤 =
1
𝑝2

1
2 𝑦3 − 𝑤�𝑥� -

�

3s+

𝜕𝕃 𝑤
𝜕𝑤 = −

1
𝑝2 𝑦3 − 𝑤�𝑥3 𝑥3

�

3s+
�_𝕃 [
�[�[� =

+
L
𝑋𝑋�

The	second	derivative	is	the	covariance	
matrix	of	the	input	samples	(decentered)	



What	does	it	mean?

40

𝑥+ 𝑥-

𝑤+ 𝑤-

𝕃 𝑤 = 𝕃 𝑤∗ +
1
2 𝑤 − 𝑤∗ �𝐻 𝑤 − 𝑤∗

→ 𝕃 𝑤 = 𝕃 𝑤∗ +
1
2 𝑤 − 𝑤∗ �𝑀�Λ𝑀 𝑤 −𝑤∗

→ 𝐿 𝑢 = 𝐿 𝑢∗ +
1
2 𝑢 − 𝑢∗ �Λ 𝑢 − 𝑢∗ 	 𝑤ℎ𝑒𝑟𝑒	𝑈 = 𝑀𝑊

U	is	the	coordinates	of	w	in	the	eigenspace of	H



What	does	it	mean?

41

𝑈MG+ = 𝑈M +
1
2Λ

W+Λ 𝑈M − 𝑈∗

→ 𝑈MG+ = 𝑈∗

𝑈MG+ = 𝑈M − ΛW+(
𝜕𝕃
𝜕𝑈)

Gradient



What	does	it	mean?

42

When	H	is	diagonal,	principal	
axes	are	aligned	with	the	frame	
of	reference.

𝐻 = 𝜆𝐼



Some	tricks

43

A	few	things	to	keep	in	mind	when	
you	actually	train	networks:

• Shuffle	the	batches	so	successive	
batches	are	very	rarely	
homogeneous

• Present	input	examples	that	have	
large	error	more	often	than	ones	
that	have	small	error

• Normalize	inputs	so	that	the	
hessian	behaves	well,	if	you	can	-
try	to	whiten	them



Convolutional Neural Networks



What	are	ConvNets?

• Patterns	in	images	tend	to	be	compositional	– very	much	locally	
correlated	but	not	so	much	for	far	away	pixels
• We	can	build	this	into	our	network	architecture	for	images
• The	idea	of	replicating	a	detector	on	the	entire	visual	field	is	the	same	
idea	as	replicating	a	detector	in	time



Visual	Architectures



Convolutional	Kernels

• Parameter	sharing	greatly	reduces	
number	of	free	parameters

• Don’t	really	see	CV	tasks	without	
ConvNets



Pooling	Layers

• Subsampling	layer	that	builds	local	invariances	into	the	
structure

• Backpropagation	typically	passes	a	gradient	of	1	to	the	cell	
where	the	max	occurred	and	0	everywhere	else

• You	see	less	and	less	of	it	– we	do	not	want	the	neural	activities	
to	be	invariant	to	the	view	point	we	want	them	to	be	changed	
by	the	change	in	viewpoint

• Fail	to	use	an	underlying	linear	manifold	where	the	variance	of	
the	image	lies



A	little	history	- ImageNet

• ImageNet	[Fei-Fei Li	et	al	2014]	– 1.5	million	images,	1000	Categories



A	little	history	- ImageNet

• ImageNet	[Fei-Fei Li	et	al	2014]	– 1.5	million	images,	1000	Categories

Female	Mammal Anthropod Young	bird



ImageNet
Post	AlexNet – almost	all	major	ImageNet	
submissions	have	been	ConvNets.

AlexNet was	the	first	fast	large	scale	GPU	
implementation	of	ConvNets

Deeper	networks,	longer	training	cut	the	
errors	by	another	factor	(2014)	of	2

VGGNet (from	Oxford)	showed	that	actually	
you	want	smaller	kernels	but	many	non-
linearities



ResNet

𝜕𝐸
𝜕𝑥�

𝜕𝐸
𝜕𝑥r



Advantages	of	Depth

Model Number	of	
free	
parameters

ImageNet	Top
5

AlexNet 60M 83.4%

VGG 138M 92.7%

GoogLeNet 11M 93.3%

ResNet-50 25.6M 93.3%

ResNet-152 60.2M 96.43% 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

60M 138M 11M 25.6M 60.2M

AlexNet VGG GoogLeNet ResNet-50 ResNet-152

ImageNet	Top	5



What	do	ConvNets really	learn?

Source:	LeCun (2016)



What	do	ConvNets really	learn?



Recurrent Neural Networks



What	do	we	need	to	learn	a	function?

• Imagine	if	we	want	a	function	that	counts	
the	number	of	non-zero’s	in	a	vector	
𝑥+, … , 𝑥,

• Ingredients:
• Memory	s	<- counts	number	of	positive	
elements

• Function	`func`	applied	to	each	element	one	at	
a	time	updates	the	memory

• A	computer	takes	each	element	of	a	
sequence	of	instructions	and	manipulates	
the	registry
• Registry	is	the	memory,	cpu instruction	is	
the	function



Recurrent	Neural	Networks
• Parametric	recursive	function
• Has	a	memory	ℎ
• Applies	a	function	g	to	each	
element	of	an	input	𝑥3

• BPTT:	c 𝑥 ≔ 𝑔 𝑓+ 𝑥 ,… , 𝑓, 𝑥
𝜕𝑐
𝜕𝑥 =

𝜕𝑐
𝜕𝑔2

𝜕𝑓3
𝜕𝑥

,

3s+

ℎM = 𝑓 𝑥M, ℎMW+

𝑓 𝑥M, ℎMW+ = 𝑔(𝑊𝑥M + 𝑈ℎMW+)



RNN’s	for	Sequence	Modelling

Source:	Karpathy (2015)



The	Unreasonable	Effectiveness	of	RNNs



Does	this	actually	work?
• You	never	see	Vanilla	RNN’s	– just	like	you	rarely	ever	see	MLP’s	in	
practice
• Hyper	difficult	to	train	– you	update	the	entire	“memory”/”registry”	ℎ
for	every	single	time	step
• A	real	CPU	only	updates	part	of	the	registry	at	each	time	step:

ℎM = 1 − 𝑢 ⊙ ℎMW+ + 𝑢 ⊙ ℎM¢

• A	real	CPU	rarely	ever	reads	all	the	values	of	the	registry:

ℎM¢ = 𝑓 𝑥M, 𝑟 ⊙ ℎMW+ = 𝑔(𝑊𝑥M + 𝑈 𝑟 ⊙ ℎMW+ )



Does	this	actually	work?
• Here’s	where	our	analogy	should	end

• 𝑢, 𝑟 cannot	be	binary	for	a	network	– it	would	create	discontinuous	functions.	We	make	them	

real:

• r	– computes	how	much	of	the	previous	hidden	state	should	be	used

• u	– computes	how	much	of	the	memory	state	is	replaced

• In	a	typical	CPU	– how	much	of	the	registry	is	used	and	how	much	is	replaced	is	hard	coded	for	

every	operation.	In	our	case,	we’d	like	to	learn	it

𝑟 = 𝑔 𝑊£𝑥M + 𝑈£ℎMW+
𝑢 = 𝑔(𝑊=𝑥M + 𝑈=ℎMW+)

This	Is	the	famed	Gated	Recurrent	Unit.	A	simple	memory	cell	that	often	outperforms	its	more	

famous	and	complex	ancestor	– the	LSTM



Long-Short	Term	Memory	Networks

• Explicitly	separates	output	h	and	memory	c
• Output	gates	control	how	much	memory	is	revealed:

𝑜 = 𝜎 𝑊K𝑥M + 𝑈KℎMW+
ℎM = 𝑜 ⊙ tanh 𝑐M

• Memory	update	resembles	GRU:
𝑐M = 𝑓 ⊙ 𝑐MW+ + 𝑖 ⊙ 𝑐M§

• f,	t	are	exactly	like	the	update/reset	gates
• The	candidate	memory	state	𝑐M§ is	computed	the	same	way	as	ℎM¢ for	
the	GRU



Why	is	it	so	hard	to	train	RNN’s?

• 𝑔 𝑎 = 𝑎 simplest	unbounded	element	wise	non-linearity
•

ℎM = 𝑊𝑥M + 𝑈ℎMW+
ℎM = 𝑊𝑥M + 𝑈 𝑊𝑥MW+ + 𝑈 𝑊𝑥MW- + 𝑈…
ℎM = 𝑊𝑥M + 𝑈𝑈𝑊𝑥MW+ + ⋯

ℎM =2 ©𝑈
rWM

rª
𝑊𝑥3

r

3s+
• Doesn’t	look	nice	does	it?



Why	is	it	so	hard	to	train	RNN’s?

©𝑈
rWM

rª
= 𝑄𝑆rWM𝑄W+

©𝑈
rWM

rª
𝑊𝑥3 = diag S¯W° ⊙𝑊𝑥3

𝑒`±^ = max𝑑𝑖𝑎𝑔 𝑆 > 1 ⟹ ℎM ⟹ ∞

Rectifiers	don’t	work!



What	happens	if	we	use	a	saturated	non-linearity?

𝜕ℎr+
𝜕𝑥M\G+

=
𝜕ℎM+

𝜕ℎ M\G+

𝜕ℎM\G+
𝜕𝑥 M\G+

𝜕ℎM+
𝜕ℎ M\G+

=
𝜕ℎM+

𝜕ℎ M]W+

𝜕ℎM]W+
𝜕ℎ M]W-

𝜕ℎM]W-
𝜕ℎ M]Wh

…

𝜕ℎM+
𝜕ℎ M]W+

= 𝑈

𝜕ℎM+
𝜕ℎ M\G+

= 𝑈r]Wr\G+



What	happens	if	we	use	a	saturated	non-linearity?

𝜕ℎr+
𝜕𝑥M\G+

=
𝜕ℎM+

𝜕ℎ M\G+

𝜕ℎM\G+
𝜕𝑥 M\G+

𝜕ℎM+
𝜕ℎ M\G+

=
𝜕ℎM+

𝜕ℎ M]W+

𝜕ℎM]W+
𝜕ℎ M]W-

𝜕ℎM]W-
𝜕ℎ M]Wh

…

𝜕ℎM+
𝜕ℎ M]W+

= 𝑈

𝜕ℎM+
𝜕ℎ M\G+

= 𝑈r]Wr\G+

Exploding	Gradients	
are	easy	to	solve:

Clip!

𝛻³ = ´𝜏
𝛻
𝛻

		𝑖𝑓	 𝛻 > 𝜏

𝛻



GRUs	and	LSTMs	fix	the	vanishing	gradient	problem

• We	had:	 �¶·]
�¶ ·\d]

= �¶·]
�¶ ·]b]

�¶·]b]
�¶ ·]b_

�¶·]b_
�¶ ·]b¸

…

• With	the	GRU,	we	have:

𝜕ℎM
𝜕ℎMW+

= 1 − 𝑢 + 𝑢
𝜕ℎy

𝜕ℎMW+

= 1	(𝑖𝑓	𝑢 = 0)
• Essentially	a	skip	connection	if	the	update	gate	is	shut



Neural	Language	Model

Source:	Bengio et	al	[2003]

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑥 =
𝑒º^»
∑ 𝑒º^Z�
3



Are	the	word	embeddings magic?

Mikolov et	al	shocked	the	world	a	
little	bit	when	the	representations	
they	learned		



Seq2Seq	Models

Source:	Sutskever et	al	[2014]



Supervised	vs	Unsupervised	Learning

• Supervised	Learning	

• Unsupervised	Learning

Learn	𝑃(𝑌|𝑋)

Learn	𝑃(𝑋)



Generative	Models

Source:	Goodfellow (2016)



Variational Autoencoders

log 𝑝À 𝑥3 ≥ 𝔼[log 𝑝À(𝑥3|𝑧)] − 𝐷Å�(𝑞À(𝑧|𝑥3)||𝑝À 𝑧 )ELBO

Reconstruct	the	input	data

Make	approximate	posterior	distribution	close	to	
prior



Source:	Karpathy (2015)



Generative	Adversarial	Networks

Source:	LeCun (2016)



Generative	Adversarial	Networks

𝐷Ç∗ 𝑥 =
𝑝È±M± 𝑥

𝑝È±M± 𝑥 + 𝑝Ç(𝑥)

⟹ 𝑝É 𝑥 = 𝑝È±M±(𝑥)



Let’s	try	a	simple	example

• Our	data	is	a	geometric	brownian (log-normal)	path
• The	discriminator	takes	actual	paths	and	the	generator	takes	a	single	
100	dimensional	vector	of	noise

Generator Generator

𝑧+ 𝑧-

Generator

𝑧�

…

𝑥+Ê 𝑥-Ê 𝑥�Ê



Let’s	try	a	simple	example

• Our	data	is	a	geometric	brownian (log-normal)	path
• The	discriminator	takes	actual	paths	and	the	generator	takes	a	single	
100	dimensional	vector	of	noise

Discriminator Discriminator

𝑥+ 𝑥o

Diiscriminator

𝑥�

𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒

…

𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒

Discriminator	can	also	be	many	
to	1

For	many	to	many	– usually	you	
use	the	median	value	of	all	the	
scores	to	classify	the	time	series



Does	it	work?
• Let’s	try	to	learn	a	Brownian	Motion

RNN’s	tend	to	be	very	
unstable

DCGAN	on	the	other	
hand	– works	like	a	
charm	



Move	Based	RNN’s

𝑥+ 𝑥o 𝑥�

𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒

…

𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒



Move	Based	RNN’s

Helping	the	discriminator	focus	
on	what’s	relevant

The	move	from	JS	to	WGAN	has	
the	focus	on	making	the	
discriminator	Lipschitz.

Spectral	Normalization	works	
for	Convs/MLPs	but	for	RNNs	
the	notion	of	Lipschitz	is	not	
even	clearly	defined	



A	Financial	Example



Can	supervised	learning	learn	an	entire	density?

• Sure!	Make	your	loss	function	optimize	for	a	quantile	(or	all	of	them)!



Little	pictures
Mean

Median

P90	Quantile



Can	supervised	learning	learn	an	entire	density?

• For	VaR use	P99	quantile	loss:

Penalize	underpredictions 99	
times	more	than	
overpredictions!



Can	supervised	learning	learn	an	entire	density?

• Quantile	Loss:	𝑄𝐿Î 𝑥, 𝑦 = 𝛼 ∗ 𝑦 − 𝑥 G + 1 − 𝛼 ∗ 𝑥 − 𝑦 G

• Penalize	over	or	underpredictions more	– depending	on	which	
quantile	you’d	like	to	predict!

• Better	way	to	predict	VaR – no	distributional	assumptions	to	show	
that	𝑃Î minimizes	the	quantile	loss

• Works	surprisingly	well	with	NN’s/RNN’s	– if	you	predict	each	𝑇+/𝑇-
individually!	(Wen	et	al	NIPS	2017)



Don’t	forget	to	teach	your	network	to	look	for	
additional	volatility
• Distance	to	earnings:

Earnings	DateEarnings	Date

𝑥M



Finally,	make	sure	you	add	Future	Information
• Targeted	input	alignment:

Output	for	Time	
10

multiply/add
/do	whatever

Very	
complicated	
network

Loss

Option	
Information	for	
Time	Period	10

Output	for	
Time	10

Block	
Gradients

FC	Layer

1	+	relu(x)	



Architecture• MLP(SNN!	– Typically,	2-4	Epoch	convergence)
• ConvLSTM/GRU
• Dropout	to	prevent	overfitting	in	RNN’s
• If	you	want	to	throw	the	kitchen	sink	of	data,	make	sure	to	do	Feature	
Selection (correctly):



Does	it	work?



Does	it	work?
Cenesizoglu et	al	2007



Does	it	work?



Does	it	work?



Does	it	work?



Conclusion

• That	was	a	lot
• Deep	Methods	are	very	promising
• Building	constraints	is	not	that	hard	– you	just	need	a	good	regularizer
• Things	I	didn’t	cover	which	are	super	cool:
• Localization/Detection
• Attention
• Recommender	Systems
• Deep	Reinforcement	Learning
• 1000	other	things	


