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What is learning?

* Traditional definition:
* Consider a task T, and a performance metric P

* An algorithm which improves it’s performance P on a task T with
experience E is said to learn from the experience E



What are the different tasks?

* Task can be:
* Classification: X — {1, ..., k}
e Regression: X —» RN
 Anomaly Detection
* Etc. etc.

* More and more:
* Denoising
* Sampling
* Machine Translation



What are the different performance
measures?

* Easier for classification/regression

* What about for unsupervised learning?

* How do we decide whether the samples we are generating are

((goodﬂ?



What are the different performance

measures?

* Are these GAN Images good?
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What are the different performance
measures?

* Does a higher BLEU score mean we’re translating better?

E: I am feeling hungry
H: {3 8@ o1 & &

o ege e . to-me hunger feeling is_
Criticisms: L: 3 ST FEHT A T False Negative
* Too much variation | hungry feel doing am 9

n-gram matches: unigrams: 0/6; bi-

° TOO Ilttle variation grams: 0/5; trigrams: 0/4; 4-grams: 0/3

* Intrinsically meaningless

E: The Lok Sabha has 545 members
H:dleh 0T H 8¥8 ST &
Lok Sabha in 545 members are

Fal Positi » I:lh @3 & U Y¥Y TE&T o
alse rositive Lok Sabha has/near 545 members are

* Human translators score low on BLEU

n-gram matches: unigrams: 5/7; bi-
Ananthakrishnan et al grams:3/6; trigrams: 1/5; 4-grams: 0/4




Why go deep?

Traditional P Modelling

» Feature
Extraction

Modern Learning

» Feature
Extraction

Going Deep

Low Level
» Features

Either the world is compositional or there is a god — Eisner, ICLR (2014)

Mid-level
features

Mid-level
features

High level
features

Source: LeCun (2017)

Classifier/
Regressor

Classifier/
Regressor

Classifier/
Regressor




So, what are those funny little diagrams?

M
i ®

0

Y
Vfwc




So, what are those funny little diagrams?

Each node is computes a weighted sum of
it’s inputs and passes it through an element
wise non-linearity

Multiple layers of inputs creates a
compositional hierarchy




So, what are those funny little diagrams?

Each node is computes a weighted sum of
it’s inputs and passes it through an element
wise non-linearity

W1
fx)=o0 z Wi X;
w, f) T
Wn
RelLU (Call payoff): Maxout max(xq,...,Xy)
Sigmoid/Tanh SelU

(Saturating):



So, what are those funny little diagrams?

Each node is computes a weighted sum of
it’s inputs and passes it through an element
wise non-linearity

(30

Multiple layers of inputs creates a
compositional hierarchy
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Universal Approximation Theorem

* Shallow and Wide vs Deep and Narrow — More memory or more time

* Universal Approximation Theorem states that a network with a single
hidden layer can approximate any continuous function

* Not surprising — when it’'s wide enough, it’s basically a lookup table

* But most interesting functions require a very large lookup table —
depth helps us reduce the number of neurons exponentially!



That sounds fun to train:
(O /0
/]
TN 1’2‘
0 '»i.\‘
)

A v’

A}«’{'
XN
O
\ 2

Backprop (Rumelhart, 1986) is maybe the reason the
whole thing works

Before we go into that, let’s talk about what gradient
descent is first




Gradient Descent

D.f(x) = Vf(x).u = ||7f(x)]|cosh

Wi = Wy — NV f(w)

= D, f (x) is maximized in the direction of Vf (x)




Gradient Descent

N < Nopt
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Gradient Descent

For linear regression, the loss function usually looks like
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Stochastic Gradient Descent

* Consists of showing the input vector for a few examples
 Compute loss
* Use average gradient as a noisy estimate of the true gradient

Weight space
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Source: LeCun (2017)




Backpropagation

Loss

oL 0L Oda 0xi4q
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This sounds hard to implement

: | import numpy as np import mxnet as mx
X = np.random.randn(3, 3)
y np.random.randn(3, 3)
z np.random.randn(3, 3)

X = mxX.nd.random normal (shape=(3, 3))
y mx.nd.random normal (shape=(3, 3))
z = mx.nd.random normal (shape=(3, 3))

a=x*y
output = a + z

a=x*y
output = a + z




With numpy, sure —with MXNet, not so much

import numpy as np import mxnet as mx

X = np.random.randn(3, 3) X = mx.nd.random normal (shape=(3, 3))
y = np.random.randn(3, 3) y = mx.nd.random normal (shape=(3, 3))
z = np.random.randn(3, 3) z = mx.nd.random normal (shape=(3, 3))
a=x*y x.attach grad()

b=a+ z -

c =2 *Db

with mx.autograd.record():
a=x*%*y
b=a+ z
cC =2 *Db
output = 3 * c

output = 3 * c

grad outputc = 3 * np.ones((3, 3))

grad bc = 2 * np.ones((3, 3))

grad ba = 1 * np.ones((3, 3))

grad ax =y

grad outputx = grad outputc * grad bc * grad ba * grad ax
print(grad outputx) print(x.grad)

output.backward



raining a simple model - manually

epochs = 10
learning rate = .0001
num_batches = num examples/batch size

) w = nd.random normal (shape=(num inputs, num outputs), ctx=model ctx)
Create variables b = nd.random normal(shape=num outputs, ctx=model ctx)
params = [w, Db]

def net(X):
return mx.nd.dot(X, w) + b

for e in range(epochs):
cumulative loss = 0
# inner loop
for i, (data, label) in enumerate(train data):
data = data.as_in context(model ctx)
label = label.as in context(model ctx).reshape((-1, 1))
with autograd.record():

Record forward output = net(data)]

pass loss = mx.nd.mean((output - label) ** 2)
loss.backward()

Update » for param in params:

parameters param|[:] = param - lr * param.grad

cumulative loss += loss.asscalar()
print(cumulative loss / num batches)



nn Module — Life is much simpler

num hidden = 64

net = gluon.nn.Sequential()

with net.name scope():
net.add(gluon.nn.Dense(num_hidden, activation="relu"))
net.add(gluon.nn.Dense(num_hidden, activation="relu"))
net.add(gluon.nn.Dense(num _outputs))

Essentially, replace simple
dot product with this

. trainer = gluon.Trainer(net.collect params(), 'adam', {'learning rate': .01, 'beta’: 0.99})

with autograd.record():
output = net(data)
loss = softmax_cross_entropy(output, label)

loss.backward()

trainer.step(data.shape[0])

Replace optimization step
with advanced optimizer




Blocks allow simplified abstractions for complicated architectures

Define Layers

Define forward pass

Output

Stacked Architecture

class MLP(gluon.Block):
def init (self, **kwargs):
super (MLP, self). init (**kwargs)
with self.name scope():
self.dense0 = gluon.nn.Dense(64)
self.densel = gluon.nn.Dense(64)
self.dense2 = gluon.nn.Dense(10)

def forward(self, x):
X = nd.relu(self.dense0(x))
X nd.relu(self.densel(x))
X = self.dense2(Xx)
return x

class MyBlock(gluon.Block):
def _ init__ (self, **kwargs):
super (MyBlock, self)._ init__(**kwargs)
with self.name scope():
self.mlpl MLP()
self.mlp2 MLP()
self.dense = gluon.nn.Dense(5)

def forward(self, x):
x1 self.mlpl(x)
X2 self.mlp2(x)
X = mx.nd.concat(xl, x2)
return mx.nd.relu(self.dense(x))



CPUs vs GPUs

+

CPU
MULTIPLE CORES

Source: NVidia

GPU
THOUSANDS OF CORES

CPUs are optimized for latency
GPUs for bandwidth

CPU can fetch small amount of memory really
quickly — GPU can fetch large amounts of memory in
the same time

The large number of cores in the GPU hide the
latency issues by parallelizing the operations over a
lot of threads

This is important for Deep Learning — since most of
it is large matrix multiplications



CPUs vs GPUs

73x

Haraware GPU - GTX 1080 Ti:

=0 M CPU

e 3584 Cuda Cores
78x « 10.6 FP32 TFLOPS
* 11GB Memory

Intel® Xeon® Processor

66X
66X
E5-2630 v3:
h » 8Cores
65x J I « 20MB Cache

VGG-106 VGG-19 RosNet-15 ResNet-101 RosNet-152 ResNet-200

Network

Time (in seconds)
S
>

Source: jcjohnson (Github)




Some Theory

* Alot of what you hear as criticism of Deep
Learning typically used to involve (and still
does) that you don’t have any guarantee of
converging to a minimum

* Ben Arous et al [2014] show that this doesn’t
really matter

e Using higher order spherical spin-glass based
results, they show that any deep rectified
netcwork has an enormous number of critical nhidden
points . o5

50

e Seems to show that the number of saddle ;gg

points with fewer downward curving points 500

are very large in number but all have the same
value!
) - 11 e ﬁ‘ ]

cou nt.



Regularization in Deep Learning



Different types of “conventional” regularization

L1 Regularization L2 Regularization
* Quite similar to conventional modeling — * Penalizes the L2-Norm of the weights

penalize the L1 Norm of the weights : : : :

* Typically implemented as weight decay in many
* Cortes et al [2016] libraries
* R(f)<R;,+ %ch=1||wk||1Rm(Hk) +K(p,m,1,d) * Rewrites the objective as: L' (X, Q,w) =
2

* Seems to say penalize higher layers L(X,Qw) + % | w|

more than lower layers * Taking derivatives: VL'(X,Q,w) = VL + Aw

* |f you're overfitting — typically it works
better to have a wider first layer and e
penalize it heavily and thinner higher Wnt1 = Wy VL
Wnt1 = Wy — VL —niwy

layers | ) War = (1= )Wy VL




Accuracy

More interesting forms of regularization

* Implicit regularization:

* Early Stopping: During training, monitor the error on a validation set and stop
when that error meets some criteria

>

Test Set Accuracy

Training Set Accuracy —_ —
Whrp1 = Wy — Anw,« + nVL
‘ | | Contour of constant error
Overfitting = A~ ‘ | Wy, Fepresents minim
w] ‘

. Early Stopping

:  Epoch o

/p —“Vt” — not a bad approximation
E >




More interesting forms of regularization

* Implicit regularization:

» Stochastic Gradient Descent: Recht et al [2015] use linear regression to
hypothesize that the gradient descent finds good “margin” solutions
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Workhorses

* Dropout:

For every single neuron (during training) —
replace the output by

=0 (+)a

Where D is a vector of Bernoulli i.i.d’s with
probability p of being zero
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Approximate the geometric mean through
a) Standard Neural Net (b) After applying dropout. scaling the weights by p during test time

Source: Goodfellow et al (2016)




Workhorses

* Dropout as Bayesian Approximation:

==
ounm
1 1

[
I
"o
1 1
o = W

Stochastic forward passes through a pre-existing
architecture

Theoretically produces reasonably calibrated
uncertainty estimates for some problems

Practically — doesn’t produce nearly enough
noise

A simple experiment proves this quite effectively



Clever Hacks

* L1 Layer (Madeka et al [2017]):

Usually through the kitchen sink at a deep model
and let it figure it all out for you (with regularization)

Doesn’t really work, and typically makes the whole
thing really slow

Another option is to penalize the L1 Norm of the
weights for a single layer at the input stage with 1-1
connections with the inputs - X; = Wl-lxi

Loss Function - L(w?!, w,x) + /1||W1||1



Clever Hacks

* L1 Layer (Madeka et al [2017]):

Sparse Layer Weights

mw lmli‘llmllinmhphuLmmHluwwmuwwmmmmMm

Most features have 0 weight

Can either do 2 phase learning (retraining without
the L1 Layer and the removed features) or just feed
0’s to your model in the data iterator

Stops the overhead of a large amount of data

Improves performance by about > 1.50



A Quick Digression on Optimization



What do batch norm and the selu activation do?

They normalize the outputs of each layer to have mean 0 and variance 1!
The equations (for Batch Norm) are:

— x* —E[x*]

k —
> JVar[x¥]

Batch norms add a learnable shift and scale:

yk — ]/kxk + lBk



What does it mean?

’ “ o "<<

:
R ¢
.
) o
1 .

Dhruv

37



What does it mean?

L(w) |

Liw) = %a(w —w*)? + L(w*)

aIL(Wo) .
= = a(wg —w™)
JdLL(w
92L(w) a(WO)
— = q =
ow? Wy — w*

—Ww = dw? dw

* (62]l,(w)>_1 L (wo)
Wo —



What does it mean?

p
1 1
L(w) = —z > (y; —w'lx;)?

L

621[.(w)
owowT

= —XXT
p

The second derivative is the covariance
matrix of the input samples (decentered)

39



What does it mean?

L(w) = L(w*) + % (w—w)TH(w —w*)

- L(w) = L(w*) + % (w—wTMTAM(w —w*)

- L(u) =Lu") + %(u —u)TA(u — u*) [where U = MW ]

Wi W3
U is the coordinates of w in the eigenspace of H

40



What does it mean?

Gradient
|

1 | |
Ut+1 — Ut + EA_lA(Ut — U*)
- Uy = U7

_, 0L
Uiy = U — A (ﬁ

41



What does it mean?

20 -
15 -
10~ When H is diagonal, principal
. axes are aligned with the frame
0- of reference.
_5 -
H =21
_10 -
_15 -
=20 ! ! ! [ ] ! [ [
20 -15 -10 -5 0 ¢ 10 15 20

42
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Some tricks

A few things to keep in mind when
you actually train networks:

e Shuffle the batches so successive
batches are very rarely
homogeneous

* Present input examples that have
large error more often than ones
that have small error

 Normalize inputs so that the
hessian behaves well, if you can -
try to whiten them

.-.'3
%‘3!".?"
o:..v".“:‘.‘
A
S

43



Convolutional Neural Networks



What are ConvNets?

* Patterns in images tend to be compositional — very much locally
correlated but not so much for far away pixels

* We can build this into our network architecture for images

* The idea of replicating a detector on the entire visual field is the same
idea as replicating a detector in time



Visual Architectures
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Convolutional Kernels

Input Volume (+pad 1) (7x7x3)
r3,0]

X[:

0

=) =] =) =) S ] Gl S = S S S = Rl S =) =) =) =] =

—
.

~—
.

© © ©O N O ~ O © ~ ~ O N O O

© N~ O N ~ OF

~

-~

© = N = N = ON O N = N = = OF O N O N O O

0

St

[

O = O N N N O O = O N N = O

S O = O = N O

Filter WO (3x3x3)
wl[:,:, 0]
oo

Bias b0 (¥x1x1)
[:,7,0]
1

Filter W1 (3x3x3)

wl[z:,:,0]
0O 1 -1

0 -1 1

1 -1 0
wl[:,:,1]
0 RN B

(73 RIS Bl

0 O B
wl[:,:,2]
O 0 10

=i

0 -1 0

Bias bl (I1x1Ix1)
bl[:,:,0]
0

Output Volume (3x3x2)
o[:,:,0]
25 28 [0
) B
3

SN 13

toggle movement

Strided
convolution

O O O

Downsampling
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Convolution

* Parameter sharing greatly reduces
number of free parameters

* Don’t really see CV tasks without
ConvNets



Pooling Layers ¥o o¥o o

Single depth slice

A 1 0 2 3 ° ‘ @ @
X DETECTOR STAGE
0 e
12 2 4
Y > DETECTOR STAGE

e Subsampling layer that builds local invariances into the
structure

* Backpropagation typically passes a gradient of 1 to the cell
where the max occurred and 0 everywhere else

* You see less and less of it — we do not want the neural activities
to be invariant to the view point we want them to be changed
by the change in viewpoint

* Fail to use an underlying linear manifold where the variance of
the image lies

I -
\ afler man pacling

mpul featare map

alter average peoliag it exgrom of 1he poading process

() Hlustration of max peoling drawback

. .n‘-' B

ipul featere map alter average peoliag dight express of the poalng proces

(b) 1ustration of average pooling drawback



A little history - ImageNet

* ImageNet [Fei-Fei Li et al 2014]

— 1.5 million images, 1000 Categories
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A little history - ImageNet

* ImageNet [Fei-Fei Li et al 2014] — 1.5 million images, 1000 Categories

Female Mammal Anthropod Young bird




ImageNet
ILSVRC top-5 error on ImageNet
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Post AlexNet — almost all major ImageNet
submissions have been ConvNets.

AlexNet was the first fast large scale GPU
implementation of ConvNets

Deeper networks, longer training cut the
errors by another factor (2014) of 2

VGGNet (from Oxford) showed that actually
you want smaller kernels but many non-
linearities

num_fc = 512

net = gluon.nn.Sequential()

with net.name scope():
net.add(gluon.nn.Conv2D(channels=20, kernel size=5, activation='relu'))
net.add(gluon.nn.MaxPool2D(pool size=2, strides=2))
net.add(gluon.nn.Conv2D(channels=50, kernel size=5, activation='relu'))
net.add(gluon.nn.MaxPool2D(pool size=2, strides=2))
# The Flatten layer collapses all axis, except the first one, into one axis.
net.add(gluon.nn.Flatten())
net.add(gluon.nn.Dense(num_fc, activation="relu"))
net.add(gluon.nn.Dense(num_outputs))



ResNet

AlexNet, 8 layers =
(ILSVRC 2012)

F(x)

Hx)=F(x)+x

VGG, 19 layers
(ILSVRC 2014)

weight layer

lrelu

weight layer

ResNet, 152 layers
(ILSVRC 2015)
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Advantages of Depth

Number of ImageNet Top ImageNet Top 5
free 5 018
parameters
0.16
0.14
AlexNet 60M 83.4% 012
VGG 138M 92.7% "
0.08
GoogleNet  11M 93.3% 0%
0.04
ResNet-50 25.6M 93.3%
0.02 I
ResNet-152 60.2M 96.43% ’ o 8 ™. - s021

AlexNet VGG GoogleNet ResNet-50 ResNet-152



What do ConvNets really learn?

Low-Level| |Mid-Level| |High-Level Trainable
— — —
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Source: LeCun (2016)




What do ConvNets really learn?

TSNE for MNist

Output

Let’s look at the
Dense - representations
learned by this layer

MaxPool

LeNet TSNE

Conv2D

Conv2D

Input

--------J-

1 2 3 4 7 8 9



Recurrent Neural Networks



What do we need to learn a function?

* Imagine if we want a function that counts

the number of non-zero’s in a vector s =0
(X1, oo, Xp)
° |ngredients: def funC (V, S ) o
« Memory s <- counts number of positive 1f v <= 0:
elements return s
* Function func applied to each element one at .
a time updates the memory else:
* A computer takes each element of a return s+l
sequence of instructions and manipulates
the registry for i in x:
* Registry is the memory, cpu instruction is s = func(i, s

the function



Recurrent Neural Networks

* Parametric recursive function
 Has a memory h

* Applies a function g to each
element of an input x;

he = f(xe, heq)

fQxe he—1) = gWxp + Uhe_q)

* BPTT: c(x) := g(f]N(x), ...,fN(x))
dc  dc O 9f;
dx 0g izlﬁ
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RNN’s for Sequence Modelling

one to one one to many many to one many to many many to many

Source: Karpathy (2015)




‘"he Unreasonab

e Effectiveness of RNNs

For @,.-, . where L,,, = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Spec(R)=U xxUxxU
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schypps and U — U is the fibre category of S in U in Section, ?? and the fact that

any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U=JUixs, Us
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Oy, is a scheme where z,2’, s” € S’ such that Ox ,» — O, ., is

separated. By Algebra, Lemma ?? we can define a map of complexes GLg(2"/S")
and we win.

To prove study we see that F|y is a covering of X, and T; is an object of Fy/s for
i > 0 and F,, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M® =I* @gpec(k) Os,s — ix' F)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) 7% ¢, (Sch/S) fpps

and

V =T(S.0) — (U,Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. a

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose X = lim | X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex

Set(A) =T(X,0x.0y)-
When in this case of to show that Q — Cz;x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 7?
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a

closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU =[[,_, _, U; be the scheme X over
S at the schemes X; — X and U = lim; X;. (]

The following lemma surjective restrocomposes of this implies that F,, = F,, =

Fx....0-

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fxs. Set T =
Ji CI},. Since I™ C I™ are nonzero over ig < p is a subset of T 00 Ay works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma ?? we see that
D(Ox+) = Ox(D)

where K is an F-algebra where 4,4, is a scheme over S.

Vision Language A grOU_P of people
Deep CNN Generating shopping at an
RNN outdoor market.

The result for prove any open covering follows from the less of Example ??. It may
replace S by Xpacesétate Which gives an open subspace of X and 7' equal to Szar,
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

o
— There are many

vegetables at the
fruit stand.

def forward(self, inputs, hidden):
emb = self.drop(self.encoder(inputs))

output, hidden = self.rnn(emb, hidden)

output = self.drop(output)

decoded = self.decoder(output.reshape((-1, self.num hidden)))
return decoded, hidden

(Vinyals, et al. (2014))



Does this actually work?

* You never see Vanilla RNN’s — just like you rarely ever see MLP’s in
practice

* Hyper difficult to train — you update the entire “memory”/”registry” h
for every single time step

* A real CPU only updates part of the registry at each time step:
he=0-w)Ohy +uQh

* A real CPU rarely ever reads all the values of the registry:

he = f(xe,m O he_q) = gWx, + U(r © hy_y))



Does this actually work?

* Here’s where our analogy should end

* u,r cannot be binary for a network — it would create discontinuous functions. We make them
real:
e r—computes how much of the previous hidden state should be used

* u-—computes how much of the memory state is replaced

* In atypical CPU — how much of the registry is used and how much is replaced is hard coded for
every operation. In our case, we’d like to learn it
r=gW"x; +U"hy_q)
u=gW4%; +U"h;_q)

This Is the famed Gated Recurrent Unit. A simple memory cell that often outperforms its more

famous and complex ancestor — the LSTM



Long-Short Term Memory Networks

* Explicitly separates output h and memory ¢

e Output gates control how much memory is revealed:
0 =o(Wox; + Upghy_1)
h; = o O® tanh(c;)

* Memory update resembles GRU:
¢t =fOc1+10OG

* f, t are exactly like the update/reset gates

* The candidate memory state C; is computed the same way as fft for
the GRU



Why is it so hard to train RNN’s?

* g(a) = a simplest unbounded element wise non-linearity
ht — Wxt + Uht—l
he =Wx, + UWx_qy + UWxi_p + U L))
h’t — I/Il/Xt + UUWXt_l + -

h, = Z (ﬁ U) W,

i=1 \ [/
* Doesn’t look nice does it?



Why is it so hard to train RNN’s?

-
(1_[ U) Wx; = diag(S'™%) © Wx;

l,
emax = Maxdiag(S) > 1= “ht” — 0

Rectifiers don’t work!



What happens if we use a saturated non-linearity?

Ohiy Ry Qe

0xty41  Oh(ey+1) 0X(ey+1)

0h¢q Ohy,  Ohg 1 Ohy

Oh(ey+1)y O, —1) O, —2) Oh,—3) ™

Ohyq —yU
0h(t,-1)

Ohey

— Ul1_10+1
Oh(ty+1)




What happens if we use a saturated non-linearity?

Ohiy Ry Ohee

0xt41  Oh(ey+1) 0% (ey+1)

ahtl _ ahtl ahtl_l ahtl_z
Oh(to+1)  Oh,-1) Oh(e,—2) Ohe,—3)
oh  _
ah(t1—1)
Ohiq — pli—lot1

ah(to+1)

Exploding Gradients
are easy to solve:

Clip!



GRUs and LSTMs fix the vanishing gradient problem

Bhtl . ahtl ahtl—l ahtl—Z
Oh(tg+1)  ON(ey-1) ON(ty—2) ON(e —3)

 We had:

* With the GRU, we have:

oh, o’
—1—
o, L Tut W —
— 1 (if u=0)

* Essentially a skip connection if the update gate is shut



Neural Language Model

i-th output = P(w, = i| context)

eﬁx} softmax
_ (... 88 .. PR ... ) ssssssssas

softmax(x) = , v <
2 . eﬁ X L ’ ’ most | computation here *\

l / ’ \

/ 1 \

Y [ \

/ 1 |

,' ' tanh '

' '

I '

| ’

| ’
\ L7

~. Matrix C

Table .
!ooé—up shared parameters
ln acrosswords NSNS NSNS EEEEEEEEEEEN
index for w;_,+ index for w,_» index for w,_,

Source: Bengio et al [2003]




Are the word embeddings magic?

Mikolov et al shocked the world a

WOMAN . . .
little bit when the representations
/ AUNT QUEERS they learned
VAN / KINGS
UNCLE
QUEEN QUEEN

/ /

KING KING



Seq2Seq Models

W | am fine <EOL>

How are you <EOL>

LSTM Encoder LSTM Decoder

Source: Sutskever et al [2014]




Supervised vs Unsupervised Learning

* Supervised Learning ‘ Learn P(Y|X)
* Unsupervised Learning ‘ Learn P(X)



Generative Models

Source:

Y Direct

Maximum Likelihood
/ \ / GAN

Explicit density Implicit density

-\ o

Tractable density

Mark hai
Approximate density arkov Chain

-Fully visible belief nets

o~ GSN

-NADE — .
"MADE Variational 'Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

Goodfellow (2016)




Variational Autoencoders

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z
N N
ez | [ Eas | | Halz | [ Bgs |

Encoder network Decoder network

9 (2|z) po(z|2)

(parameters ¢) (parameters 0)

4 H 2

Make approximate posterior distribution close to
prior

ELBO  log pg(x;) = E[logpg(x;|z)] — Dk1(qe(z|x;)|Ipe(2))

Reconstruct the input data



~

Variational Autoencoders
r

L . . Maximize
Putting it all t maximizing the  cinoodof  Sample x|z from |z ~ N (g2, Lz)2)
likelihoog'Tower bound original input
being / \

. [logp(,(g;(") | ;)] — Dicr(gs(z | ) || pe(z)) reconstructed Hz|z Ea:lz

) L:(m(:)r, 0,0) i Decoder network \/
po(z|2)

yA
Sample z from 2|z ~ N-(//lea:a Zzl:z:)

TN

Make approximate
posterior distribution

close to prior I*l'zlx Zz|a:
F inibatch of i t Encoder network \/
or every minibatch of inpu
data: compute this forward qe(2|7)
pass, and then backprop! Input Data XL

Source: Karpathy (2015)




Generative Adversarial Networks

Xﬁw
Y

T

B

Source: LeCun (2016)




Generative Adversarial Networks

minmax V(D,G) = E,., . (z)[log D(x)] + E,,_(»)(log(1 — D(G(2)))].

G D
[ noise ]
) o (x) generator
DG*(x) —_ pd (x) + p (x) .. generator
ata G [ data sample ]—{ discriminator sample
data
sample?

= Py (X) = Daata(x)

yes/ no



Let’s try a simple example

e Our data is a geometric brownian (log-normal) path

* The discriminator takes actual paths and the generator takes a single
100 dimensional vector of noise

~ ’-x; ~

X1 XT

Generator Generator Generator




Let’s try a simple example

e Our data is a geometric brownian (log-normal) path

* The discriminator takes actual paths and the generator takes a single

100 dimensional vector of noise
True/False True/False True/False

Discriminator can also be many
tol

Discriminator Discriminator Diiscriminator

For many to many — usually you
use the median value of all the
scores to classify the time series




Does it work?

i

* Let’s try to learn a Brownian Motion

WN

EEEEEEEEEEET]

EPPEEREEEE

RNN’s tend to be very

unstable
hand — works like a

DCGAN on the other
charm

W on o



Move Based RNN'’s

07s - True/False True/False True/False
0.150 - A AA’
I W, T
| I A 4 -
0.125 - % ,.; =
: Ll
0.100 - =
0.075 JI' \1 "L 1’1 —
—
0.050 - /V

0 20 40 60 80 100



Move Based RNN’s

Helping the discriminator focus
on what’s relevant

The move from JS to WGAN has
the focus on making the
discriminator Lipschitz.

Spectral Normalization works
for Convs/MLPs but for RNNs
the notion of Lipschitz is not
even clearly defined




A Financial Example



Can supervised learning learn an entire density?

* Sure! Make your loss function optimize for a quantile (or all of them)!

P90 Quantile Loss P50 Quantile Loss



Little pictures

P90 Quantile Loss




Can supervised learning learn an entire density?

* For VaR use P99 quantile loss:

P99 Quantile Loss

Penalize underpredictions 99
times more than
overpredictions!




Can supervised learning learn an entire density?
e Quantile Loss: QL (x,y) =a*(y—x)*+ (1 —a) *x (x —y)*

* Penalize over or underpredictions more — depending on which
qguantile you'd like to predict!

* Better way to predict VaR — no distributional assumptions to show
that P, minimizes the quantile loss

* Works surprisingly well with NN’s/RNN’s — if you predict each T, /T,
individually! (Wen et al NIPS 2017)



Don’t forget to teach your network to look for
additional volatility

* Distance to earnings:

Earnings Date Earnings Date



Finally, make sure you add Future Information

e Targeted input alignment:

Option
Information for 1 + relu(x)
Block Time Period 10
ocC
FC Layer
Gradients ¢
Output for
Time 10
Very Output for Time multiply/add
complicated + Loss

10 /do whatever
network




* MLP(SNN! = Typically, 2-4 Epoch convergence) Architecture

* ConvLSTM/GRU
* Dropout to prevent overfitting in RNN’s

* If you want to throw the kitchen sink of data, make sure to do Feature
Selection (correctly):

.| Your favorite Neural
Network

> Output

Add L1 Penalty
on this layer



Does it work?

"
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Does it work?

Cenesizoglu et al 2007

N I
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Does it work?

MSL Ticker
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Does it work?
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Does it work?

AAPL Ticker
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Conclusion

e That was a lot
* Deep Methods are very promising
* Building constraints is not that hard — you just need a good regularizer

* Things | didn’t cover which are super cool:
* Localization/Detection

Attention

Recommender Systems

Deep Reinforcement Learning

1000 other things



